

Programming Elixir ≥ 1.6

Functional |> Concurrent |> Pragmatic |> Fun

by Dave Thomas

Version: P1.0 (May 2018)

Copyright © 2018 The Pragmatic Programmers, LLC.
 This book is licensed to
 the individual who purchased it. We don't copy-protect it
 because that would limit your ability to use it for your
 own purposes. Please don't break this trust—you can use
 this across all of your devices but please do not share this copy
 with other members of your team, with friends, or via
 file sharing services. Thanks.

 Many of the designations used by manufacturers and
 sellers to distinguish their products are claimed as
 trademarks. Where those designations appear in this book,
 and The Pragmatic Programmers, LLC was aware of a
 trademark claim, the designations have been printed in
 initial capital letters or in all capitals. The Pragmatic
 Starter Kit, The Pragmatic Programmer, Pragmatic
 Programming, Pragmatic Bookshelf and the linking g
 device are trademarks of The Pragmatic Programmers,
 LLC.

 Every precaution was taken in the preparation of this book.
 However, the publisher assumes no responsibility for errors
 or omissions, or for damages that may result from the use
 of information (including program listings) contained
 herein.

About the Pragmatic Bookshelf

 The Pragmatic Bookshelf is an agile publishing company.
 We’re here because we want to improve the lives of developers.
 We do this by creating timely, practical titles, written by programmers for programmers.

 Our Pragmatic courses, workshops, and other products can
 help you and your team create better software and have more
 fun. For more information, as well as the latest Pragmatic
 titles, please visit us at http://pragprog.com.

 Our ebooks do not contain any Digital Restrictions
 Management, and have always been DRM-free. We pioneered the
 beta book concept, where you can purchase and read a book
 while it’s still being written, and provide feedback to the
 author to help make a better book for everyone. Free
 resources for all purchasers include source code downloads
 (if applicable), errata and discussion forums, all
 available on the book's home page at pragprog.com. We’re
 here to make your life easier.

New Book Announcements

 Want to keep up on our latest titles and announcements, and
 occasional special offers? Just create an account on
 pragprog.com (an email address and a password is all it takes)
 and select the checkbox to receive newsletters. You can
 also follow us on twitter as @pragprog.

About Ebook Formats

 If you buy directly from
 pragprog.com, you get
 ebooks in all available formats for one price. You can
 synch your ebooks amongst all your devices (including
 iPhone/iPad, Android, laptops, etc.) via Dropbox.
 You get free updates for the life of the edition. And, of
 course, you can always come back and re-download your books
 when needed. Ebooks bought from the Amazon Kindle store are
 subject to Amazon's polices. Limitations in Amazon's file
 format may cause ebooks to display differently on different
 devices. For more information, please see our FAQ at
 pragprog.com/frequently-asked-questions/ebooks. To learn
 more about this book and access the free resources, go to
 https://pragprog.com/book/elixir16, the book's homepage.

 Thanks for your continued support,

 Andy Hunt

 The Pragmatic Programmers

The team that produced this book includes: Andy Hunt (Publisher)Janet Furlow (VP of Operations)Brian MacDonald (Managing Editor)Jacquelyn Carter (Supervising Editor)Candace Cunningham (Copy Editor)Potomac Indexing, LLC (Indexing)Gilson Graphics (Layout)

 For customer support, please contact
 support@pragprog.com.

 For international rights, please contact
 rights@pragprog.com.

Table of Contents
	 Foreword
	 A Vain Attempt at a Justification, Take Two	Acknowledgments

	1. Take the Red Pill	Programming Should Be About Transforming Data
	Installing Elixir
	Running Elixir
	Suggestions for Reading the Book
	Exercises
	Think Different(ly)

	Part I. Conventional Programming	2. Pattern Matching	Assignment:
I Do Not Think It Means What You Think It Means.
	More Complex Matches
	Ignoring a Value with _ (Underscore)
	Variables Bind Once (per Match)
	Another Way of Looking at the Equals Sign

	3. Immutability	You Already Have (Some) Immutable Data
	Immutable Data Is Known Data
	Performance Implications of Immutability
	Coding with Immutable Data

	4. Elixir Basics	Built-in Types
	Value Types
	System Types
	Collection Types
	Maps
	Binaries
	Dates and Times
	Names, Source Files, Conventions, Operators, and So On
	Variable Scope
	End of the Basics

	5. Anonymous Functions	Functions and Pattern Matching
	One Function, Multiple Bodies
	Functions Can Return Functions
	Passing Functions as Arguments
	Functions Are the Core

	6. Modules and Named Functions	Compiling a Module
	The Function’s Body Is a Block
	Function Calls and Pattern Matching
	Guard Clauses
	Default Parameters
	Private Functions
	The Amazing Pipe Operator: |>
	Modules
	Module Attributes
	Module Names: Elixir, Erlang, and Atoms
	Calling a Function in an Erlang Library
	Finding Libraries

	7. Lists and Recursion	Heads and Tails
	Using Head and Tail to Process a List
	Using Head and Tail to Build a List
	Creating a Map Function
	Reducing a List to a Single Value
	More Complex List Patterns
	The List Module in Action
	Get Friendly with Lists

	8. Maps, Keyword Lists, Sets, and Structs	How to Choose Between Maps, Structs, and Keyword Lists
	Keyword Lists
	Maps
	Pattern Matching and Updating Maps
	Updating a Map
	Structs
	Nested Dictionary Structures
	Sets
	With Great Power Comes Great Temptation

	9. An Aside—What Are Types?
	10. Processing Collections—Enum and Stream	Enum—Processing Collections
	Streams—Lazy Enumerables
	The Collectable Protocol
	Comprehensions
	Moving Past Divinity

	11. Strings and Binaries	String Literals
	The Name “strings”
	Single-Quoted Strings—Lists of Character Codes
	Binaries
	Double-Quoted Strings Are Binaries
	Binaries and Pattern Matching
	Familiar Yet Strange

	12. Control Flow	if and unless
	cond
	case
	Raising Exceptions
	Designing with Exceptions
	Doing More with Less

	13. Organizing a Project	The Project: Fetch Issues from GitHub
	Step 1: Use Mix to Create Our New Project
	Transformation: Parse the Command Line
	Write Some Basic Tests
	Refactor: Big Function Alert
	Transformation: Fetch from GitHub
	Step 2: Use Libraries
	Transformation: Convert Response
	Transformation: Sort Data
	Transformation: Take First n Items
	Transformation: Format the Table
	Step 3: Make a Command-Line Executable
	Step 4: Add Some Logging
	Step 5: Create Project Documentation
	Coding by Transforming Data

	14. Tooling	Debugging with IEx
	Testing
	Code Dependencies
	Server Monitoring
	Source-Code Formatting
	Inevitably, There’s More

	Part II. Concurrent Programming	15. Working with Multiple Processes	A Simple Process
	Process Overhead
	When Processes Die
	Parallel Map—The “Hello, World” of Erlang
	A Fibonacci Server
	Agents—A Teaser
	Thinking in Processes

	16. Nodes—The Key to Distributing Services	Naming Nodes
	Naming Your Processes
	Input, Output, PIDs, and Nodes
	Nodes Are the Basis of Distribution

	17. OTP: Servers	Some OTP Definitions
	An OTP Server
	GenServer Callbacks
	Naming a Process
	Tidying Up the Interface
	Making Our Server into a Component

	18. OTP: Supervisors	Supervisors and Workers
	Worker Restart Options
	Supervisors Are the Heart of Reliability

	19. A More Complex Example	Introduction to Duper
	The Duper Application
	But Does It Work?
	Planning Your Elixir Application
	Next Up

	20. OTP: Applications	This Is Not Your Father’s Application
	The Application Specification File
	Turning Our Sequence Program into an OTP Application
	Supervision Is the Basis of Reliability
	Releasing Your Code
	Distillery—The Elixir Release Manager
	OTP Is Big—Unbelievably Big

	21. Tasks and Agents	Tasks
	Agents
	A Bigger Example
	Agents and Tasks, or GenServer?

	Part III. More Advanced Elixir	22. Macros and Code Evaluation	Implementing an if Statement
	Macros Inject Code
	Using the Representation as Code
	Using Bindings to Inject Values
	Macros Are Hygienic
	Other Ways to Run Code Fragments
	Macros and Operators
	Digging Deeper
	Digging Ridiculously Deep

	23. Linking Modules: Behavio(u)rs and use	Behaviours
	use and __using__
	Putting It Together—Tracing Method Calls
	Use use

	24. Protocols—Polymorphic Functions	Defining a Protocol
	Implementing a Protocol
	The Available Types
	Protocols and Structs
	Built-in Protocols
	Protocols Are Polymorphism

	25. More Cool Stuff	Writing Your Own Sigils
	Multi-app Umbrella Projects
	But Wait! There’s More!

	A1. Exceptions: raise and try, catch and throw	Raising an Exception
	catch, exit, and throw
	Defining Your Own Exceptions
	Now Ignore This Appendix

	A2. Type Specifications and Type Checking	When Specifications Are Used
	Specifying a Type
	Defining New Types
	Specs for Functions and Callbacks
	Using Dialyzer

	 Bibliography

Copyright © 2018, The Pragmatic Bookshelf.

Foreword

I have always been fascinated with how changes in hardware affect how
we write software.

A couple of decades ago, memory was a very limited resource. It made
sense back then for our software to take hold of some piece of
memory and mutate it as necessary. However, allocating this memory and
cleaning up after we no longer needed it was a very error-prone
task. Some memory was never freed; sometimes memory was allocated over
another structure, leading to faults. At the time, garbage collection
was a known technique, but we needed faster CPUs in order to use it in
our daily software and free ourselves from manual memory
management. That has happened—most of our languages are now
garbage-collected.

Today, a similar phenomenon is happening. Our CPUs are not getting any
faster. Instead, our computers get more and more cores. This means
 new software needs to use as many cores as it can if it is to maximize
its use of the machine. This conflicts directly with how we currently write
software.

In fact, mutating our memory state actually slows down our software
when many cores are involved. If you have four cores trying to access
and manipulate the same piece of memory, they can trip over each
other. This potentially corrupts memory unless some kind of
synchronization is applied.

I quickly learned that applying this synchronization is manual, error
prone, and tiresome, and it hurts performance. I suddenly realized that’s not
how I wanted to spend time writing software in the next years of my
career, and I set out to study new languages and technologies.

It was on this quest that I fell in love with the Erlang virtual
machine and ecosystem.

In the Erlang VM, all code runs in tiny concurrent processes, each with its own state. Processes talk to each other
via messages. And since all communication happens by message-passing,
exchanging messages between different machines on the same network is
handled transparently by the VM, making it a perfect environment for
building distributed software!

However, I felt there was still a gap in the Erlang ecosystem. I missed
first-class support for some of the features I find necessary in my
daily work—things such as metaprogramming, polymorphism, and
first-class tooling. From this need, Elixir was born.

Elixir is a pragmatic approach to functional programming. It values
its functional foundations and it focuses on developer
productivity. Concurrency is the backbone of Elixir software. As
garbage collection once freed developers from the shackles of memory
management, Elixir is here to free you from antiquated concurrency
mechanisms and bring you joy when writing concurrent code.

A functional programming language lets us think in terms of functions
that transform data. This transformation never mutates data. Instead,
each application of a function potentially creates a new, fresh
version of the data. This greatly reduces the need for
data-synchronization mechanisms.

Elixir also empowers developers by providing macros. Elixir code is
nothing more than data, and therefore can be manipulated via macros like
any other value in the language.

Finally, object-oriented programmers will find many of the
mechanisms they consider essential to writing good software, such as
polymorphism, in Elixir.

All this is powered by the Erlang VM, a 20-year-old virtual machine
built from scratch to support robust, concurrent, and distributed
software. Elixir and the Erlang VM are going to change how you write
software and make you ready to tackle the upcoming years in
programming.

José Valim
Creator of Elixir
Tenczynek, Poland, October 2014

Copyright © 2018, The Pragmatic Bookshelf.

A Vain Attempt at a Justification, Take Two

I’m a language nut. I love trying languages out, and I love thinking about
their design and implementation. (I know; it’s sad.)

I came across Ruby in 1998 because I was an avid reader of
comp.lang.misc (ask your parents). I downloaded it, compiled it, and
fell in love. As with any time you fall in love, it’s difficult to
explain why. It just worked the way I work, and it had enough depth to
keep me interested.

Fast-forward 15 years. All that time I’d been looking for something
new that gave me the same feeling.

I came across Elixir a while back, but for some reason never got sucked
in. But a few months before starting on the first edition of
this book, I was chatting with
Corey Haines. I was bemoaning the fact that I wanted a way to
show people functional programming concepts without the
academic trappings those books seem to attract. He told me to look
again at Elixir. I did, and I felt the same way I felt when I first
saw Ruby.

So now I’m dangerous. I want other people to see just how great this
is. I want to evangelize. So I write a book.
But I don’t want to write another 900-page Pickaxe book. I want this book
to be short and exciting. So I’m not going into all the detail,
listing all the syntax, all the library functions, all the OTP
options, or….

Instead, I want to give you an idea of the power and beauty of this
programming model. I want to inspire you to get involved, and then
point to the online resources that will fill in the gaps.

But mostly, I want you to have fun.

Fast-forward three years. Elixir has moved on. Phoenix, its
connectivity framework, introduced a whole new set of
developers to the joys of a functional approach. The Nerves project
makes it easy to write embedded Elixir code on Linux-based
microcontrollers. The Elixir base has grown—there are international,
national, and regional conferences. Job ads ask for Elixir developers.

I’ve been moving on, too. But I’m still using Elixir daily. I just
completed my second year as an adjunct professor at Southern Methodist
University, corrupting the programmers of tomorrow with the
temptations of Elixir. I’ve written an
online Elixir course.[1]

And now I’m revving this book. To be honest, I don’t really have to:
Elixir 1.6 is not so different from 1.3 that the older book would not
be useful. But my own thinking about Elixir has matured. I now do some
things differently. And I’d like to share these things with you.

Acknowledgments

It seems to be a common thread—the languages I fall in love with are
created by people who are both clever and extremely nice. José Valim,
the creator of Elixir, takes both of these adjectives to a new
level. I owe him a massive thank-you for giving me so much fun over
the last 18 months. Along with him, the whole Elixir core team has
done an amazing job of cranking out an entire ecosystem that feels way
more mature than its years. Thank you, all.

A conversation with Corey Haines reignited my interest in Elixir—thank
you, Corey, for good evenings, some interesting times in Bangalore, and
the inspiration.

Bruce Tate is always an interesting sounding board, and his comments
on early drafts of the book made a big difference. And I’ve been
blessed with an incredible number of active and insightful beta
readers who have made literally hundreds of suggestions for
improvements. Thank you, all.

A big tip of the hat to Jessica Kerr, Anthony Eden, and Chad Fowler
for letting me steal their tweets.

Kim Shrier seems to have been involved with my
writing since before I started writing. Thanks, Kim, for another set
of perceptive and detailed critiques.

Candace Cunningham again amazed me with her detailed copy editing: it’s
rare to find someone who can correct both your grammar and your code. The crew at Potomac did their customary stellar job of indexing.

Dave Thomas
mailto:dave@pragdave.me
Dallas, TX, April 2018

Footnotes

	[1]
	
https://codestool.coding-gnome.com

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 1
Take the Red Pill

The Elixir programming language wraps functional programming with
immutable state and an actor-based approach to concurrency in a tidy,
modern syntax. And it runs on the industrial-strength, high-performance, distributed Erlang VM. But what does all that mean?

It means you can stop worrying about many of the difficult things that
currently consume your time. You no longer have to think too hard
about protecting your data consistency in a multithreaded
environment. You worry less about scaling your
applications. And, most importantly, you can think about
programming in a different way.

Programming Should Be About Transforming Data

If you come from an object-oriented world, then you are
used to thinking in terms of classes and their instances. A class
defines behavior, and objects hold state. Developers spend time coming
up with intricate hierarchies of classes that try to model their
problem, much as Victorian scientists created taxonomies of
butterflies.

When we code with objects, we’re thinking about state. Much of our
time is spent calling methods in objects and passing them other
objects. Based on these calls, objects update their own state, and
possibly the state of other objects. In this world, the class is
king—it defines what each instance can do, and it implicitly controls
the state of the data its instances hold. Our goal is data-hiding.

But that’s not the real world. In the real world, we don’t want to
model abstract hierarchies (because in reality there aren’t that
many true hierarchies). We want to get things done,
not maintain state.

Right now, for instance, I’m taking empty computer files and transforming them into files
containing text. Soon I’ll transform those files into a
format you can read. A web server somewhere will transform your
request to download the book into an HTTP response containing the
content.

I don’t want to hide data. I want to transform it.
Combine Transformations with Pipelines

Unix users are accustomed to the philosophy of small, focused command-line
tools that can be combined in arbitrary ways. Each tool takes an
input, transforms it, and writes the result in a format the next
tool (or a human) can use.

This philosophy is incredibly flexible and leads to fantastic
reuse. The Unix utilities can be combined in ways undreamed of by
their authors. And each one multiplies the potential of the others.

It’s also highly reliable—each small program does one thing well,
which makes it easier to test.

There’s another benefit. A command pipeline can operate in
parallel. If I write
	​ 	​$ ​​grep​​ ​​Elixir​​ ​​*.pml​​ ​​|​​ ​​wc​​ ​​-l​

the word-count program, wc, runs at the same time as the grep
command. Because wc consumes grep’s output as it is produced, the
answer is ready with virtually no delay once grep finishes.

Just to give you a taste of this, here’s an Elixir
function called pmap. It takes a collection and a function, and
returns the list that results from applying that function to each
element of the collection. But…it runs a separate process to do the
conversion of each element. Don’t worry about the details for now.
spawn/pmap1.exs
	​ 	​defmodule​ Parallel ​do​
	​ 	 ​def​ pmap(collection, func) ​do​
	​ 	 collection
	​ 	 |> Enum.map(&(Task.async(​fn​ -> func.(&1) ​end​)))
	​ 	 |> Enum.map(&Task.await/1)
	​ 	 ​end​
	​ 	​end​

We could run this function to get the squares of the numbers from 1 to
1,000.
	​ 	result = Parallel.pmap 1..1000, &(&1 ​*​ &1)

And, yes, I just kicked off 1,000 background processes, and I used all
the cores and processors on my machine.

The code may not make much sense, but by about halfway through the
book, you’ll be writing this kind of thing for yourself.
Functions Are Data Transformers

Elixir lets us solve the problem in the same way the Unix shell
does. Rather than have command-line utilities, we have functions. And
we can string them together as we please. The smaller—more
focused—those functions, the more flexibility we have when combining
them.

If we want, we can make these functions run in parallel—Elixir has a
simple but powerful mechanism for passing messages between them. And
these are not your father’s boring old processes or threads—we’re
talking about the potential to run millions of them on a single
machine and have hundreds of these machines interoperating. Bruce
Tate commented on this paragraph with this thought: “Most programmers treat threads
and processes as a necessary evil; Elixir developers feel they are an
important simplification.” As we get deeper into the book, you’ll
start to see what he means.

This idea of transformation lies at the heart of functional
programming: a function transforms its inputs into its output. The
trigonometric function sin is an example—give it
π/4, and you’ll get
back 0.7071. An HTML templating system is a function; it takes a
template containing placeholders and a list of named
values, and produces a completed HTML document.

But this power comes at a price. You’re going to have to unlearn a
whole lot of what you know about programming. Many of your instincts
will be wrong. And this will be frustrating, because you’re going to
feel like a total n00b.

Personally, I feel that’s part of the fun.
You didn’t learn, say, object-oriented programming overnight. You are
unlikely to become a functional programming expert by breakfast,
either.

But at some point things will click. You’ll start thinking about
problems in a different way, and you’ll find yourself writing code
that does amazing things with very little effort on your part. You’ll
find yourself writing small chunks of code that can be used over and
over, often in unexpected ways (just as wc and grep can be).

Your
view of the world may even change a little as you stop thinking in terms of responsibilities and start thinking in terms of
getting things done.
And just about everyone can agree that will be fun.

Installing Elixir

This book assumes you’re using at least Elixir 1.6.
The most up-to-date instructions for installing Elixir are available
 at http://elixir-lang.org/install.html. Go
install it now.

Running Elixir

In this book, I show a terminal session like this:
	​ 	​$ ​​echo​​ ​​Hello,​​ ​​World​
	​ 	Hello, World

The terminal prompt is the dollar sign, and the stuff you type
follows. (On your system, the prompt will likely be different.) Output from
the system is shown without highlighting.
iex—Interactive Elixir

To test that your Elixir installation was successful, let’s start
an interactive Elixir session. At your regular shell prompt, type
iex.
	​ 	$ iex
	​ 	Erlang/OTP 20 [erts-9.1] [source] [64-bit] [smp:4:4] [ds:4:4:10]
	​ 	 [async-threads:10] [hipe] [kernel-poll:false]h
	​ 	Interactive Elixir (x.y.z) - press Ctrl+C to exit (type h() ENTER for h
	​ 	elp)
	​ 	​iex(1)>​

(The various version numbers you see will likely be different—I won’t
bother to show them on subsequent examples.)

Once you have an IEx prompt, you can enter Elixir code and you’ll see
the result. If you enter an expression that continues over more than one
line, IEx will prompt for the additional lines with an ellipsis (…).
	​ 	​iex(1)>​ 3 + 4
	​ 	7
	​ 	​iex(2)>​ String.reverse ​"​​madamimadam"​
	​ 	"madamimadam"
	​ 	​iex(3)>​ 5 *
	​ 	​...(3)>​ 6
	​ 	30
	​ 	​iex(4)>​

The number in the prompt increments for each complete expression
executed. I’ll omit the number in most of the examples that follow.

There are several ways of exiting from IEx—none
are tidy. The easiest two are typing
Ctrl-C twice or typing
Ctrl-G followed by
q and Return. On some
systems, you can also use a single
Ctrl-\.
IEx Helpers

IEx has a number of helper functions. Type
h (followed by Return) to get a list:
	​ 	iex> h
	​ 	 IEx.Helpers
	​ 	
	​ 	Welcome to Interactive Elixir. You are currently seeing the documentation
	​ 	for the module IEx.Helpers which provides many helpers to make Elixir's
	​ 	shell more joyful to work with.
	​ 	
	​ 	This message was triggered by invoking the helper h(), usually referred to
	​ 	as h/0 (since it expects 0 arguments).
	​ 	
	​ 	You can use the h/1 function to invoke the documentation for any Elixir
	​ 	module or function:
	​ 	
	​ 	 iex> h(Enum)
	​ 	 iex> h(Enum.map)
	​ 	 iex> h(Enum.reverse/1)
	​ 	
	​ 	You can also use the i/1 function to introspect any value you have in the
	​ 	shell:
	​ 	
	​ 	 iex> i("hello")
	​ 	
	​ 	There are many other helpers available, here are some examples:
	​ 	
	​ 	• b/1 - prints callbacks info and docs for a given module
	​ 	• c/1 - compiles a file into the current directory
	​ 	• c/2 - compiles a file to the given path
	​ 	• cd/1 - changes the current directory
	​ 	• clear/0 - clears the screen
	​ 	• exports/1 - shows all exports (functions + macros) in a module
	​ 	• flush/0 - flushes all messages sent to the shell
	​ 	• h/0 - prints this help message
	​ 	• h/1 - prints help for the given module, function or macro
	​ 	• i/0 - prints information about the last value
	​ 	• i/1 - prints information about the given term
	​ 	• ls/0 - lists the contents of the current directory
	​ 	• ls/1 - lists the contents of the specified directory
	​ 	• open/1 - opens the source for the given module or function
	​ 	 in your editor
	​ 	• pid/1 - creates a PID from a string
	​ 	• pid/3 - creates a PID with the 3 integer arguments passed
	​ 	• ref/1 - creates a Reference from a string
	​ 	• ref/4 - creates a Reference with the 4 integer arguments
	​ 	 passed
	​ 	• pwd/0 - prints the current working directory
	​ 	• r/1 - recompiles the given module's source file
	​ 	• recompile/0 - recompiles the current project
	​ 	• runtime_info/0 - prints runtime info (versions, memory usage, stats)
	​ 	• v/0 - retrieves the last value from the history
	​ 	• v/1 - retrieves the nth value from the history
	​ 	
	​ 	Help for all of those functions can be consulted directly from the command
	​ 	line using the h/1 helper itself. Try:
	​ 	
	​ 	 iex> h(v/0)
	​ 	
	​ 	To list all IEx helpers available, which is effectively all exports
	​ 	(functions and macros) in the IEx.Helpers module:
	​ 	
	​ 	 iex> exports(IEx.Helpers)
	​ 	
	​ 	This module also includes helpers for debugging purposes, see IEx.break!/4
	​ 	for more information.
	​ 	
	​ 	To learn more about IEx as a whole, type h(IEx).

In the list of helper functions, the number following the slash is the
number of arguments the helper expects.

Probably the most useful is h itself. With an argument, it gives you
help on Elixir modules or individual functions in a module. This works
for any modules loaded into IEx (so when we talk about
projects later on, you’ll see your own documentation here, too). For example, the IO module performs common input/output functions. For help on
the module, type h(IO) or h IO:
	​ 	​iex>​ h IO ​# or...​
	​ 	​iex>​ h(IO)
	​ 	
	​ 	Functions handling IO.
	​ 	
	​ 	Many functions in this module expect an IO device as argument. An IO device
	​ 	must be a PID or an atom representing a process. For convenience, Elixir
	​ 	provides :stdio and :stderr as shortcuts to Erlang's :standard_io and
	​ 	:standard_error....

This book frequently uses the puts function in the IO module,
which in its simplest form writes a string to the console. Let’s get
the documentation:
	​ 	​iex>​ h IO.puts
	​ 	 def puts(device \\ :stdio, item)
	​ 	
	​ 	Writes item to the given device, similar to write/2, but adds a
	​ 	newline at the end.
	​ 	
	​ 	By default, the device is the standard output. It returns :ok if it
	​ 	succeeds.
	​ 	
	​ 	## Examples
	​ 	
	​ 	 IO.puts "Hello, World!"
	​ 	 #=> Hello, World!
	​ 	
	​ 	 IO.puts :stderr, "error"
	​ 	 #=> error

Another informative helper is i, which displays information about a value:
	​ 	​iex>​ i 123
	​ 	Term
	​ 	 123
	​ 	Data type
	​ 	 Integer
	​ 	Reference modules
	​ 	 Integer
	​ 	Implemented protocols
	​ 	 IEx.Info, Inspect, List.Chars, String.Chars
	​ 	
	​ 	​iex>​ i ​"​​cat"​
	​ 	Term
	​ 	 "cat"
	​ 	Data type
	​ 	 BitString
	​ 	Byte size
	​ 	 3
	​ 	Description
	​ 	 This is a string: a UTF-8 encoded binary. It's printed surrounded by
	​ 	 "double quotes" because all UTF-8 encoded codepoints in it are printable.
	​ 	Raw representation
	​ 	 <<99, 97, 116>>
	​ 	Reference modules
	​ 	 String, :binary
	​ 	Implemented protocols
	​ 	 IEx.Info, Collectable, Inspect, List.Chars, String.Chars
	​ 	
	​ 	​iex>​ i %{ ​name:​ ​"​​Dave"​, ​likes:​ ​"​​Elixir"​ }
	​ 	Term
	​ 	 %{likes: "Elixir", name: "Dave"}
	​ 	Data type
	​ 	 Map
	​ 	Reference modules
	​ 	 Map
	​ 	Implemented protocols
	​ 	 IEx.Info, Collectable, Enumerable, Inspect
	​ 	
	​ 	​iex>​ i Map
	​ 	Term
	​ 	 Map
	​ 	Data type
	​ 	 Atom
	​ 	Module bytecode
	​ 	 bin/../lib/elixir/ebin/Elixir.Map.beam
	​ 	Source
	​ 	 lib/elixir/lib/map.ex
	​ 	Version
	​ 	 [234303838320399652689109978883853316190]
	​ 	Compile options
	​ 	 []
	​ 	Description
	​ 	 Use h(Map) to access its documentation.
	​ 	 Call Map.module_info() to access metadata.
	​ 	Raw representation
	​ 	 :"Elixir.Map"
	​ 	Reference modules
	​ 	 Module, Atom
	​ 	Implemented protocols
	​ 	 IEx.Info, Inspect, List.Chars, String.Chars

IEx is a surprisingly powerful tool. Use it to compile and
execute entire projects, log in to remote machines, and access running Elixir applications.

And, if you happen to include the occasional bug in your code
(deliberately, of course), IEx has a simple debugger. We’ll talk about
it when we look at tooling.

Customizing iex

You can customize IEx by setting options. For example, I like showing
the results of evaluations in bright cyan. To find out how to do that, I used this:
	​ 	​iex>​ h IEx.configure
	​ 	def configure(options)
	​ 	
	​ 	Configures IEx.
	​ 	
	​ 	The supported options are: :colors, :inspect, :default_prompt,
	​ 	:alive_prompt and :history_size.
	​ 	
	​ 	Colors
	​ 	
	​ 	A keyword list that encapsulates all color settings used by the shell. See
	​ 	documentation for the IO.ANSI module for the list of supported colors and
	​ 	attributes.
	​ 	
	​ 	The value is a keyword list. List of supported keys:
	​ 	
	​ 	• :enabled - boolean value that allows for switching the coloring
	​ 	 on and off
	​ 	• :eval_result - color for an expression's resulting value
	​ 	• :eval_info - … various informational messages
	​ 	• :eval_error - … error messages
	​ 	• :stack_app - … the app in stack traces
	​ 	• :stack_info - … the remaining info in stack traces
	​ 	• :ls_directory - … for directory entries (ls helper)
	​ 	• :ls_device - … device entries (ls helper)
	​ 	
	​ 	 . . .

I then created a file called .iex.exs in my home directory, containing
	​ 	IEx.configure ​colors:​ [​eval_result:​ [​:cyan​, ​:bright​]]

If your IEx session looks messed up (and things such as
[33m appear in the output), it’s likely your console does not
support ANSI escape sequences. In that case, disable colorization
using
	​ 	IEx.configure ​colors:​ [​enabled:​ false]

You can put any Elixir code into .iex.exs.
Compile and Run

Once you tire of writing one-line programs in IEx, you’ll want to
start putting code into source files. These files will typically have
the extension .ex or .exs. This is a convention—files ending in .ex
are intended to be compiled into bytecodes and then run, whereas those
ending in .exs are more like programs in scripting languages—they are
effectively interpreted at the source level. When we come to write
tests for our Elixir programs, you’ll see that the application files
have .ex extensions, whereas the tests have .exs because we don’t need
to keep compiled versions of the tests lying around.

Let’s write the classic first program. Go to a working directory and
create a file called hello.exs.
intro/hello.exs
	​ 	IO.puts ​"​​Hello, World!"​

That example shows how most of the code listings in this book
are presented. The bar before the code itself shows the path and
file name that contains the code. If you’re reading an ebook, you’ll be
able to click on this to download the source file. You can also
download all the code by visiting the book’s page on our
site and clicking on the Source Code link.[2]

Source file names are written in lowercase with underscores. They
will have the extension .ex for programs that you intend to compile
into binary form, and .exs for scripts that you want to run without
compiling. Our “Hello, World” example is essentially throw-away code, so
we used the .exs extension for it.

Having created our source file, let’s run it. In the same directory
where you created the file, run the elixir command:
	​ 	​$ ​​elixir​​ ​​hello.exs​
	​ 	Hello, World!

We can also compile and run it inside IEx using the c helper:
	​ 	$ iex
	​ 	​iex>​ c ​"​​hello.exs"​
	​ 	Hello, World!
	​ 	[]
	​ 	​iex>​

The c helper compiled and executed the source file. The [] that
follows the output is the return value of the c function—if the
source file had contained any modules, their names would have been
listed here.

The c helper compiled the source file as freestanding code. You can
also load a file as if you’d typed each line into IEx using
import_file. In this case, local variables set in the file are
available in the IEx session.

As some folks fret over such things, the Elixir convention is to use
two-column indentation and spaces (not tabs).

Suggestions for Reading the Book

This book is not a top-to-bottom reference guide to Elixir. Instead,
it is intended to give you enough information to know what questions to
ask and when to ask them. So approach what follows with a
spirit of adventure. Try the code as you read, and don’t stop
there. Ask yourself questions and then try to answer
them, either by coding or by searching the web.

Participate in the book’s discussion forums and consider
joining the Elixir mailing list.[3]

You’re joining the Elixir community while
it is still young. Things are exciting and dynamic, and there are
plenty of opportunities to contribute.

Exercises

You’ll find exercises sprinkled throughout this book. To become familiar with a language, you need to go beyond reading a book and following along with the examples; you need to write some code yourself. These exercises are starting points so you can do some exploring of the language. Try them out, and don’t be afraid to make mistakes.

Think Different(ly)

This is a book about thinking differently—about accepting that
some of the things folks say about programming may not be the
full story:

	Object orientation is not the only way to design code.
	Functional programming need not be complex or mathematical.
	The bases of programming are not assignments, if statements, and loops.
	Concurrency does not need locks, semaphores, monitors, and the like.
	Processes are not necessarily expensive resources.
	Metaprogramming is not just something tacked onto a language.
	Even if it is work, programming should be fun.

Of course, I’m not saying Elixir is a magic potion (well, technically
it is, but you know what I mean). It isn’t the one true
way to write code. But it’s different enough from the
mainstream that learning it will give you more perspective and will
open your mind to new ways of thinking about programming.

So let’s start.

And remember to make it fun.

Footnotes

	[2]
	
http://pragprog.com/titles/elixir16

	[3]
	
https://elixirforum.com

Copyright © 2018, The Pragmatic Bookshelf.

Part 1
Conventional Programming

 Elixir is great for writing highly parallel,
 reliable applications.

 But to be a great language for parallel programming, a
 language first has to be great for conventional,
 sequential programming. In this part of the book we’ll cover
 how to write Elixir code, and explore the idioms and conventions
 that make Elixir so powerful.

We cover:
	How pattern matching binds values to variables
	How matching handles structured data
	How _ (underscore) lets you ignore a match

 Chapter
 2
Pattern Matching

We started the previous chapter by saying Elixir engenders a
different way of thinking about programming.

To illustrate this and to lay the foundation for a lot of Elixir
programming, let’s start reprogramming your brain by looking at
one of the cornerstones of all programming
languages—assignment.

Assignment:
I Do Not Think It Means What You Think It Means.

Let’s use the interactive Elixir shell, IEx, to look at a
simple piece of code. (Remember, you start IEx at the command prompt
using the iex command. You enter Elixir code at its iex> prompt,
and it displays the resulting values.)
	​ 	​iex>​ a = 1
	​ 	1
	​ 	​iex>​ a + 3
	​ 	4

Most programmers would look at this code and say, “OK, we assign 1 to
a variable a, then on the next line we add 3 to a, giving us 4.”

But when it comes to Elixir, they’d be wrong. In Elixir, the equals sign is not an assignment. Instead it’s like an assertion. It succeeds if
Elixir can find a way of making the left-hand side equal the right-hand
side. Elixir calls the = symbol the match operator.

In this case, the left-hand side is a variable and the right-hand
side is an integer literal, so Elixir can make the match true by
binding the variable a to value 1. You could argue it is just an
assignment. But let’s take it up a notch.
	​ 	​iex>​ a = 1
	​ 	1
	​ 	​iex>​ 1 = a
	​ 	1
	​ 	​iex>​ 2 = a
	​ 	​**​ (MatchError) no match of right hand side value: 1

Look at the second line of code, 1 = a. It’s another match, and it
passes. The variable a already has the value 1 (it was set in the
first line), so what’s on the left of the equals sign is the same
as what’s on the right, and the match succeeds.

But the third line, 2 = a, raises an error. You might have expected
it to assign 2 to a, as that would make the match succeed, but
Elixir will only change the value of a variable on the left
 side of an equals sign—on the right a variable is
replaced with its value. This failing line of code is the same
as 2 = 1, which causes the error.

More Complex Matches

First, a little background syntax. Elixir lists can be created using
square brackets containing a comma-separated set of values. Here are
some lists:
	​ 	[​"​​Humperdinck"​, ​"​​Buttercup"​, ​"​​Fezzik"​]
	​ 	[​"​​milk"​, ​"​​butter"​, [​"​​iocane"​, 12]]

Back to the match operator.
	​ 	​iex>​ list = [1, 2, 3]
	​ 	[1, 2, 3]

To make the match true, Elixir bound the variable list to the
list [1, 2, 3].

But let’s try something else:
	​ 	​iex>​ list = [1, 2, 3]
	​ 	[1, 2, 3]
	​ 	​iex>​ [a, b, c] = list
	​ 	[1, 2, 3]
	​ 	​iex>​ a
	​ 	1
	​ 	​iex>​ b
	​ 	2
	​ 	​iex>​ c
	​ 	3

Elixir looks for a way to make the value of the left side the
same as the value of the right side. The left side is a list containing three
variables, and the right is a list of three values, so the two sides
could be made the same by setting the variables to the corresponding
values.

Elixir calls this process pattern matching. A pattern (the left
side) is matched if the values (the right side) have the same
structure and if each term in the pattern can be matched to the
corresponding term in the values. A literal value in the pattern
matches that exact value, and a variable in the pattern matches by
taking on the corresponding value.

Let’s look at a few more examples.
	​ 	​iex>​ list = [1, 2, [3, 4, 5]]
	​ 	[1, 2, [3, 4, 5]]
	​ 	​iex>​ [a, b, c] = list
	​ 	[1, 2, [3, 4, 5]]
	​ 	​iex>​ a
	​ 	1
	​ 	​iex>​ b
	​ 	2
	​ 	​iex>​ c
	​ 	[3, 4, 5]

The value on the right side that corresponds to the term c on the left side
is the sublist [3,4,5]; that is the value given to
c to make the match true.

Let’s try a pattern containing some values and variables.
	​ 	​iex>​ list = [1, 2, 3]
	​ 	[1, 2, 3]
	​ 	​iex>​ [a, 2, b] = list
	​ 	[1, 2, 3]
	​ 	​iex>​ a
	​ 	1
	​ 	​iex>​ b
	​ 	3

The literal 2 in the pattern matched the corresponding term on
the right, so the match succeeds by setting the values of a and b
to 1 and 3. But…
	​ 	​iex>​ list = [1, 2, 3]
	​ 	[1, 2, 3]
	​ 	​iex>​ [a, 1, b] = list
	​ 	​**​ (MatchError) no match of right hand side value: [1, 2, 3]

Here the 1 (the second term in the list) cannot be matched against
the corresponding element on the right side, so no variables
are set and the match fails. This gives us a way of matching a
list that meets certain criteria—in this case a length of 3, with 1
as its second element.

Your Turn
	Exercise: PatternMatching-1

Which of the following will match?

	a = [1, 2, 3]
	a = 4
	4 = a
	[a, b] = [1, 2, 3]
	a = [[1, 2, 3]]
	[a] = [[1, 2, 3]]
	[[a]] = [[1, 2, 3]]

Ignoring a Value with _ (Underscore)

If we didn’t need to capture a value during the match, we could use
the special variable _ (an underscore). This acts like a variable
but immediately discards any value given to it—in a pattern match, it
is like a wildcard saying, “I’ll accept any value here.” The following
example matches any three-element list that has a 1 as its first element.
	​ 	​iex>​ [1, _, _] = [1, 2, 3]
	​ 	[1, 2, 3]
	​ 	​iex>​ [1, _, _] = [1, ​"​​cat"​, ​"​​dog"​]
	​ 	[1, "cat", "dog"]

Variables Bind Once (per Match)

Once a variable has been
bound to a value in the matching process, it keeps that value
for the remainder of the match.
	​ 	​iex>​ [a, a] = [1, 1]
	​ 	[1, 1]
	​ 	​iex>​ a
	​ 	1
	​ 	​iex>​ [b, b] = [1, 2]
	​ 	​**​ (MatchError) no match of right hand side value: [1, 2]

The first expression in this example succeeds because a is initially
matched with the first 1 on the right side. The value in
a is then used in the second term to match the second 1 on the right side.

In the next expression, the first b matches the 1. But the second
b corresponds to the value 2 on the right. b cannot have two
different values, and so the match fails.

However, a variable can be bound to a new value in a subsequent match,
and its current value does not participate in the new match.
	​ 	​iex>​ a = 1
	​ 	1
	​ 	​iex>​ [1, a, 3] = [1, 2, 3]
	​ 	[1, 2, 3]
	​ 	​iex>​ a
	​ 	2

What if you instead want to force Elixir to use the existing value of
the variable in the pattern? Prefix it with ^ (a caret). In Elixir,
we call this the pin operator.

	​ 	​iex>​ a = 1
	​ 	1
	​ 	​iex>​ a = 2
	​ 	2
	​ 	​iex>​ ^a = 1
	​ 	​**​ (MatchError) no match of right hand side value: 1

This also works if the variable is a component of a pattern:
	​ 	​iex>​ a = 1
	​ 	1
	​ 	​iex>​ [^a, 2, 3] = [1, 2, 3] ​# use existing value of a​
	​ 	[1, 2, 3]
	​ 	​iex>​ a = 2
	​ 	2
	​ 	​iex>​ [^a, 2] = [1, 2]
	​ 	​**​ (MatchError) no match of right hand side value: [1, 2]

There’s one more important part of pattern matching, which we’ll look
at when we start digging deeper into lists.

Your Turn
	Exercise: PatternMatching-2

Which of the following will match?
	[a, b, a] = [1, 2, 3]
	[a, b, a] = [1, 1, 2]
	[a, b, a] = [1, 2, 1]

	Exercise: PatternMatching-3

The variable a is bound to the value 2. Which of the
following will match?
	[a, b, a] = [1, 2, 3]
	[a, b, a] = [1, 1, 2]
	a = 1
	^a = 2
	^a = 1
	^a = 2 - a

Another Way of Looking at the Equals Sign

Elixir’s pattern matching is similar to Erlang’s (the main
difference being that Elixir allows a match to reassign to a variable
that was assigned in a prior match, whereas in Erlang a variable can
 be assigned only once).

Joe Armstrong, Erlang’s creator, compares the equals sign in
Erlang to that used in algebra. When you write the equation x = a + 1,
you are not assigning the value of a + 1 to x. Instead you’re
simply asserting that the expressions x and a + 1 have the same
value. If you know the value of x, you can work out the value of
a, and vice versa.

His point is that you had to unlearn the algebraic meaning of = when
you first came across assignment in imperative programming
languages. Now’s the time to un-unlearn it.

That’s why I talk about pattern matching as the first chapter in this
part of the book. It is a core part of Elixir—we’ll also use it
in conditions, function calls, and function invocation.

But really, I wanted to get you thinking differently about
programming languages and to show you that some of your existing
assumptions won’t work in Elixir.

And speaking of existing assumptions…the next chapter kills
another sacred cow. Your current programming language is probably
designed to make it easy to change data. After all, that’s what
programs do, right? Not Elixir. Let’s talk about a language in which
all data is immutable.

Copyright © 2018, The Pragmatic Bookshelf.

 Change and decay in all around I see…

Henry Francis Lyte“Abide with Me”

 Chapter
 3
Immutability

If you listen to functional-programming aficionados, you’ll hear
people making a big deal about immutability—the fact that in a
functional program, data cannot be altered once created.

And, indeed, Elixir enforces immutable data.

But why?

You Already Have (Some) Immutable Data

Forget about Elixir for a moment. Think about your current
programming language of choice. Let’s imagine you’d written this:
	​ 	count = 99
	​ 	do_something_with(count)
	​ 	print(count)

You’d expect it to output 99. In fact, you’d be
very surprised if it didn’t. At your very core, you believe that 99
will always have the value 99.

Now, you could obviously bind a new value to your variable, but
that doesn’t change the fact that the value 99 is still 99.

Imagine programming in a world where you could not rely on
that—where some other code, possibly running in parallel with your
own, could change the value of 99. In that world, the call to
do_something_with might kick off code that runs in the background,
passing it the value 99 as an argument. And that could change
the contents of the parameter it receives. Suddenly, 99 could be 100.

You’d be (rightly) upset. And, what’s worse, you’d never really be
able to guarantee your code produced the correct results.

Still thinking about your current language, consider this:
	​ 	array = [1, 2, 3]
	​ 	do_something_with(array)
	​ 	print(array)

Again, you’d hope the print call would output [1,2,3]. But in
most languages, do_something_with will receive the array as a
reference. If it decides to change the second element or delete the
contents entirely, the output will not be what you expect. Now it is
harder to look at your code and reason about what it does.

Take this a step further—run multiple threads, all with access to the
array. Who knows what state the array will be in if they all start changing
it?

All this is because most compound data structures in most programming
languages are mutable—you can change all or part of their content. And
if pieces of your code do this in parallel, you’re in a world of hurt.

By coincidence, Jessica Kerr (@jessitron) tweeted the following on the
day I updated this section:

It’s spot-on.

Immutable Data Is Known Data

Elixir sidesteps these problems. In Elixir, all values are
immutable. The most complex nested list, the database record—these
things behave just like the simplest integer. Their values are all
immutable.

In Elixir, once a variable references a list such as [1,2,3], you
know it will always reference those same values (until you rebind
the variable). And this makes concurrency a lot less frightening.

But what if you need to add 100 to each element in [1,2,3]? Elixir
does it by producing a copy of the original, containing the new
values. The original remains unchanged, and your operation will not affect any other code holding a
reference to that original.

This fits in nicely with the idea that
programming is about transforming data. When we update [1,2,3], we
don’t hack it in place. Instead we transform it into something new.

Performance Implications of Immutability

It would be easy to assume that this approach to programming is
inefficient. After all, you have to create a new copy of data whenever
you update it, and that’s going to leave lots of old values around to
be garbage-collected. Let’s look at these in turn.
Copying Data

Although common sense might dictate that all this copying of data is
inefficient, the reverse is true. Because Elixir knows that
existing data is immutable, it can reuse it, in part or as a whole,
when building new structures.

Consider the following code. (It uses a new operator, [head | tail], which builds
a new list with head as its first element and tail as the rest. We’ll
spend a whole chapter on this when we talk about lists and
recursion. For now, just trust.)
	​ 	​iex>​ list1 = [3, 2, 1]
	​ 	[3, 2, 1]
	​ 	​iex>​ list2 = [4 | list1]
	​ 	[4, 3, 2, 1]

In most languages, list2 would be built by creating a new list
containing the values 4, 3, 2, and 1. The three values in list1 would
be copied into the tail of list2. And that would be necessary
because list1 would be mutable.

But Elixir knows list1 will never change, so it simply
constructs a new list with a head of 4 and a tail of list1.
Garbage Collection

The other performance issue with a transformational language is that
you quite often end up leaving old values unused when you create new
values from them. This leaves a bunch of things using up memory on the
heap, so garbage collection has to reclaim them.

Most modern languages have a garbage collector, and developers have
grown to be suspicious of them—they can impact performance
quite badly.

But the cool thing about Elixir is that you write your code using lots
and lots of processes, and each process has its own heap. The data in
your application is divvied up between these processes, so each
individual heap is much, much smaller than would have been the case if
all the data had been in a single heap. As a result, garbage
collection runs faster. If a process terminates
before its heap becomes full, all its data is discarded—no
garbage collection is required.

Coding with Immutable Data

Once you accept the concept, coding with immutable data is
surprisingly easy. You just have to remember that any function that
transforms data will return a new copy of it. Thus, we never
capitalize a string. Instead, we return a capitalized copy of a
string.
	​ 	​iex>​ name = ​"​​elixir"​
	​ 	"elixir"
	​ 	​iex>​ cap_name = String.capitalize name
	​ 	"Elixir"
	​ 	​iex>​ name
	​ 	"elixir"

If you’re coming from an object-oriented language, you may dislike that we
write String.capitalize name and not name.capitalize(). But in object-oriented
languages, objects mostly have mutable state. When you make a call
such as name.capitalize() you have no immediate indication whether
you are changing the internal representation of the name, returning a
capitalized copy, or both. There’s plenty of scope for ambiguity.

In a functional language, we always transform data. We never modify it
in place. The syntax reminds us of this every time we use it.

That’s enough theory. It’s time to start learning the language. In the
next chapter we’ll quickly go over the basic data types and some
syntax, and in the following chapters we’ll look at functions and
modules.

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	Five value types
	Two system types
	Four collection types
	Naming, operators, etc.
	The with expression

 Chapter
 4
Elixir Basics

In this chapter we’ll look at the types that are baked into Elixir,
along with a few other things you need to know to get started. This
chapter is deliberately terse—you’re a programmer and you know what an
integer is, so I’m not going to insult you. Instead, I try to cover
the Elixir-specific stuff you need to know.

Built-in Types

Elixir’s built-in types are

	Value types:	Arbitrary-sized integers
	Floating-point numbers
	Atoms
	Ranges
	Regular expressions

	System types:	PIDs and ports
	References

	Collection types:	Tuples
	Lists
	Maps
	Binaries

Functions are a type too. They have their own chapter,
following this one.

You might be surprised that this list doesn’t include things such as
strings and structures. Elixir has them, but they are built
using the basic types from this list. However, they are important.
Strings have their own chapter, and we have a couple of chapters on
lists and maps (and other dictionary-like types). The maps chapter
also describes the Elixir structure facilities.

Finally, there’s some debate about whether regular expressions and
ranges are value types. Technically they aren’t—under the hood
they are just structures. But right now it’s convenient to
treat them as distinct types.

Value Types

The value types in Elixir represent numbers, names, ranges, and
regular expressions.
Integers

Integer literals can be written as decimal (1234), hexadecimal
(0xcafe), octal (0o765), and binary (0b1010).

Decimal numbers may contain underscores—these are often used to
separate groups of three digits when writing large numbers, so one million
could be written 1_000_000 (or perhaps 100_0000 in China and Japan).

There is no fixed limit on the size of integers—their internal
representation grows to fit their magnitude.
	​ 	factorial(10000) ​# => 28462596809170545189...and so on for 35640 more digits...​

(You’ll see how to write a function such as factorial in Modules and Named Functions,.)
Floating-Point Numbers

Floating-point numbers are written using a decimal point. There must
be at least one digit before and after the decimal point. An optional
trailing exponent may be given. These are all valid floating-point
literals:
	​ 	1.0 0.2456 0.314159e1 314159.0e-5

Floats are IEEE 754 double precision, giving them about 16 digits of
accuracy and a maximum exponent of around 10308.
Atoms

Atoms are constants that represent something’s name. We write them using a leading colon (:), which can be followed by an
atom word or an Elixir operator. An atom word is a sequence of
UTF-8 letters (including combining marks), digits, underscores, and at signs (@). It may end with an
exclamation point or a question mark. You can also create atoms
containing arbitrary characters by enclosing the characters following
the colon in double quotes. These are
all atoms:
	​ 	​:fred​ ​:is_binary?​ ​:var@2​ ​:<>​ ​:===​ ​:"func/3"​
	​ 	​:"long john silver"​ ​:эликсир​ ​:mötley_crüe​

An atom’s name is its value. Two atoms with the same name will always compare as being
equal, even if they were created by different applications on
two computers separated by an ocean.

We’ll be using atoms a lot to tag values.
Ranges

Ranges are represented as start..end, where start and end are
integers.
Regular Expressions

Elixir has regular-expression literals, written as ~r{regexp} or
~r{regexp}opts. Here I show the delimiters for regular-expression
literals as { and }, but they are considerably more flexible. You
can choose any nonalphanumeric characters as delimiters, as
described in the discussion of sigils. Some people use ~r/…/ for
nostalgic reasons, but this is less convenient than the
bracketed forms, as any forward slashes inside the pattern must be
escaped.

Elixir regular expression support is provided by
PCRE,[4] which basically provides a Perl 5–compatible syntax
for patterns.

You can specify one or more single-character options following a
regexp literal. These modify the literal’s match behavior or add
functionality.

	Opt	Meaning
	f	
 Force the pattern to start to match on the first line of a multiline string.

	i	
 Make matches case insensitive.

	m	

 If the string to be matched contains multiple lines, ^
 and $ match the start and end of these lines. \A
 and \z continue to match the beginning or end of the
 string.

	s	

 Allow . to match any newline characters.

	U	

 Normally modifiers like * and + are greedy,
 matching as much as possible. The U modifier makes them
 ungreedy, matching as little as possible.

	u	
 Enable unicode-specific patterns like \p.

	x	

 Enable extended mode—ignore whitespace and comments (# to end of
 line).

You manipulate regular expressions with the Regex module.
	​ 	​iex>​ Regex.run ​~​r{[aeiou]}, ​"​​caterpillar"​
	​ 	["a"]
	​ 	​iex>​ Regex.scan ​~​r{[aeiou]}, ​"​​caterpillar"​
	​ 	[["a"], ["e"], ["i"], ["a"]]
	​ 	​iex>​ Regex.split ​~​r{[aeiou]}, ​"​​caterpillar"​
	​ 	["c", "t", "rp", "ll", "r"]
	​ 	​iex>​ Regex.replace ​~​r{[aeiou]}, ​"​​caterpillar"​, ​"​​*"​
	​ 	"c​*​t​*​rp​*​ll​*​r"

System Types

These types reflect resources in the underlying Erlang VM.
PIDs and Ports

A PID is a reference to a local or remote process, and a port is a
reference to a resource (typically external to the application) that
you’ll be reading or writing.

The PID of the current process is available by calling self. A new
PID is created when you spawn a new process. We’ll talk about this in Part II.
References

The function make_ref creates a globally unique reference; no other
reference will be equal to it. We don’t use references in this book.

Collection Types

The types we’ve seen so far are common in other programming
languages. Now we’re getting into more exotic types, so we’ll go into more detail here.

Elixir collections can hold values of any type (including other collections).
Tuples

A tuple is an ordered collection of values. As with all Elixir data
structures, once created a tuple cannot be modified.

You write a tuple between braces, separating the elements with commas.
	​ 	{ 1, 2 } { ​:ok​, 42, ​"​​next"​ } { ​:error​, ​:enoent​ }

A typical Elixir tuple has two to four elements—any more and you’ll
probably want to look at maps,, or
structs,.

You can use tuples in pattern matching:
	​ 	​iex>​ {status, count, action} = {​:ok​, 42, ​"​​next"​}
	​ 	{:ok, 42, "next"}
	​ 	​iex>​ status
	​ 	:ok
	​ 	​iex>​ count
	​ 	42
	​ 	​iex>​ action
	​ 	"next"

It is common for functions to return a tuple where the first element
is the atom :ok if there were no errors. Here’s an example (assuming you
have a file called mix.exs in your current directory):
	​ 	​iex>​ {status, file} = File.open(​"​​mix.exs"​)
	​ 	{:ok, #PID<0.39.0>}

Because the file was successfully opened, the tuple contains an :ok
status and a PID, which is how we access the contents.

A common practice is to write matches that assume success:
	​ 	​iex>​ { ​:ok​, file } = File.open(​"​​mix.exs"​)
	​ 	{:ok, #PID<0.39.0>}
	​ 	​iex>​ { ​:ok​, file } = File.open(​"​​non-existent-file"​)
	​ 	​**​ (MatchError) no match of right hand side value: {:error, :enoent}

The second open failed, and returned a tuple where the first element
was :error. This caused the match to fail, and the error message
shows that the second element contains the reason—enoent is Unix-speak
for “file does not exist.”

Lists

We’ve already seen Elixir’s list literal syntax, [1,2,3]. This might
lead you to think lists are like arrays in other languages, but
they are not. (In fact, tuples are the closest Elixir gets to a
conventional array.) Instead, a list is effectively a linked data
structure.
	Definition of a List

	

 	

A list may either be empty or consist of a head and a
tail. The head contains a value and the tail is itself a list.

(If you’ve used the language Lisp, then this will all seem very
familiar.)

As we’ll discuss in Chapter 7, ​Lists and Recursion​, this recursive definition
of a list is the core of much Elixir programming.

Because of their implementation, lists are easy to traverse linearly,
but they are expensive to access in random order. (To get to the nth element, you have to scan through n–1
previous elements.) It is always cheap to get the head of a list and
to extract the tail of a list.

Lists have one other performance characteristic. Remember that we said
 all Elixir data structures are
immutable?
That means once a list has been made, it will never be
changed. So, if we want to remove the head from a list, leaving just
the tail, we never have to copy the list. Instead we can return
a pointer to the tail. This is the basis of all the list-traversal
tricks we’ll cover in Chapter 7, ​Lists and Recursion​.

Elixir has some operators that work specifically on lists:
	​ 	​iex>​ [1, 2, 3] ++ [4, 5, 6] ​# concatenation​
	​ 	[1, 2, 3, 4, 5, 6]
	​ 	​iex>​ [1, 2, 3, 4] -- [2, 4] ​# difference​
	​ 	[1, 3]
	​ 	​iex>​ 1 ​in​ [1,2,3,4] ​# membership​
	​ 	true
	​ 	​iex>​ ​"​​wombat"​ ​in​ [1, 2, 3, 4]
	​ 	false

Keyword Lists

Because we often need simple lists of key/value pairs, Elixir gives us
a shortcut. If we write
	​ 	[​name:​ ​"​​Dave"​, ​city:​ ​"​​Dallas"​, ​likes:​ ​"​​Programming"​]

Elixir converts it into a list of two-value tuples:
	​ 	[{​:name​, ​"​​Dave"​}, {​:city​, ​"​​Dallas"​}, {​:likes​, ​"​​Programming"​}]

Elixir allows us to leave off the square brackets if a
keyword list is the last argument in a function call. Thus,
	​ 	DB.save record, [{​:use_transaction​, true}, {​:logging​, ​"​​HIGH"​}]

can be written more cleanly as
	​ 	DB.save record, ​use_transaction:​ true, ​logging:​ ​"​​HIGH"​

We can also leave off the brackets if a keyword list appears as the
last item in any context where a list of values is expected.
	​ 	​iex>​ [1, ​fred:​ 1, ​dave:​ 2]
	​ 	[1, {:fred, 1}, {:dave, 2}]
	​ 	​iex>​ {1, ​fred:​ 1, ​dave:​ 2}
	​ 	{1, [fred: 1, dave: 2]}

Maps

A map is a collection of key/value pairs. A map literal looks like this:
	​ 	%{ key => value, key => value }

Here are some maps:
	​ 	​iex>​ states = %{ ​"​​AL"​ => ​"​​Alabama"​, ​"​​WI"​ => ​"​​Wisconsin"​ }
	​ 	%{"AL" => "Alabama", "WI" => "Wisconsin"}
	​ 	
	​ 	​iex>​ responses = %{ { ​:error​, ​:enoent​ } => ​:fatal​, { ​:error​, ​:busy​ } => ​:retry​ }
	​ 	%{{:error, :busy} => :retry, {:error, :enoent} => :fatal}
	​ 	
	​ 	​iex>​ colors = %{ ​:red​ => 0xff0000, ​:green​ => 0x00ff00, ​:blue​ => 0x0000ff }
	​ 	%{blue: 255, green: 65280, red: 16711680}

In the first case the keys are strings, in the second they’re
tuples, and in the third they’re atoms. Although typically
all the keys in a map are the same type, that isn’t required.
	​ 	​iex>​ %{ ​"​​one"​ => 1, ​:two​ => 2, {1,1,1} => 3 }
	​ 	%{:two => 2, {1, 1, 1} => 3, "one" => 1}

If the key is an atom, you can use the same shortcut that you use with
keyword lists:
	​ 	​iex>​ colors = %{ ​red:​ 0xff0000, ​green:​ 0x00ff00, ​blue:​ 0x0000ff }
	​ 	%{blue: 255, green: 65280, red: 16711680}

You can also use expressions for the keys in map literals:
	​ 	​iex>​ name = ​"​​José Valim"​
	​ 	"José Valim"
	​ 	​iex>​ %{ String.downcase(name) => name }
	​ 	%{"josé valim" => "José Valim"}

Why do we have both maps and keyword lists? Maps allow only one entry
for a particular key, whereas keyword lists allow the key to be
repeated. Maps are efficient (particularly as they grow), and they can
be used in Elixir’s pattern matching, which we discuss in later
chapters.

In general, use keyword lists for things such as command-line
parameters and passing around options, and use maps
when you want an associative array.
Accessing a Map

You extract values from a map using the key. The square-bracket syntax works with
all maps:
	​ 	​iex>​ states = %{ ​"​​AL"​ => ​"​​Alabama"​, ​"​​WI"​ => ​"​​Wisconsin"​ }
	​ 	%{"AL" => "Alabama", "WI" => "Wisconsin"}
	​ 	​iex>​ states[​"​​AL"​]
	​ 	"Alabama"
	​ 	​iex>​ states[​"​​TX"​]
	​ 	nil
	​ 	
	​ 	​iex>​ response_types = %{ { ​:error​, ​:enoent​ } => ​:fatal​,
	​ 	​...>​ { ​:error​, ​:busy​ } => ​:retry​ }
	​ 	%{{:error, :busy} => :retry, {:error, :enoent} => :fatal}
	​ 	​iex>​ response_types[{​:error​,​:busy​}]
	​ 	:retry

If the keys are atoms, you can also use a dot notation:
	​ 	​iex>​ colors = %{ ​red:​ 0xff0000, ​green:​ 0x00ff00, ​blue:​ 0x0000ff }
	​ 	%{blue: 255, green: 65280, red: 16711680}
	​ 	​iex>​ colors[​:red​]
	​ 	16711680
	​ 	​iex>​ colors.green
	​ 	65280

You’ll get a KeyError if there’s no matching key when you use
the dot notation.

Binaries

Sometimes you need to access data as a sequence of bits and
bytes. For example, the headers in JPEG and MP3 files contain fields
where a single byte may encode two or three separate values.

Elixir supports this with the binary data type. Binary literals are
enclosed between << and >>.

The basic syntax packs successive integers into bytes:
	​ 	​iex>​ bin = << 1, 2 >>
	​ 	<<1, 2>>
	​ 	​iex>​ byte_size bin
	​ 	2

You can add modifiers to control the type and size of each individual
field. Here’s a single byte that contains three fields of widths 2, 4,
and 2 bits. (The example uses some built-in libraries to show the
result’s binary value.)
	​ 	​iex>​ bin = <<3 :: size(2), 5 :: size(4), 1 :: size(2)>>
	​ 	<<213>>
	​ 	​iex>​ ​:io​.format(​"​​~-8.2b~n"​, ​:binary​.bin_to_list(bin))
	​ 	11010101
	​ 	:ok
	​ 	​iex>​ byte_size bin
	​ 	1

Binaries are both important and arcane. They’re important because
Elixir uses them to represent UTF strings. They’re arcane because, at
least initially, you’re unlikely to use them directly.

Dates and Times

Elixir 1.3 added a calendar module and four new date- and time-related
types. Initially, they were little more than data holders, but
Elixir 1.5 started to add some functionality to them.

The Calendar module represents the rules used to manipulate dates.
The only current implementation is Calendar.ISO, the ISO-8601
representation of the Gregorian
calendar.[5]

The Date type holds a year, a month, a day, and a reference to the
ruling calendar.
	​ 	​iex>​ d1 = Date.new(2018, 12, 25)
	​ 	{:ok, ~D[2018-12-25]}
	​ 	​iex>​ {​:ok​, d1} = Date.new(2018, 12, 25)
	​ 	{:ok, ~D[2018-12-25]}
	​ 	​iex>​ d2 = ​~​D[2018-12-25]
	​ 	~D[2018-12-25]
	​ 	​iex>​ d1 == d2
	​ 	true
	​ 	​iex>​ Date.day_of_week(d1)
	​ 	2
	​ 	​iex>​ Date.add(d1, 7)
	​ 	~D[2019-01-01]
	​ 	​iex>​ inspect d1, ​structs:​ false
	​ 	"%{__struct__: Date, calendar: Calendar.ISO, day: 25, month: 12, year: 2018}"

(The sequences ~D[...] and ~T[...] are examples of Elixir’s
sigils. They are a way of constructing literal values. We’ll see them
again when we look at strings and binaries.)

Elixir can also represent a range of dates:
	​ 	​iex>​ d1 = ​~​D[2018-01-01]
	​ 	~D[2018-01-01]
	​ 	​iex>​ d2 = ​~​D[2018-06-30]
	​ 	~D[2018-06-30]
	​ 	​iex>​ first_half = Date.range(d1, d2)
	​ 	#DateRange<~D[2018-01-01], ~D[2018-06-30]>
	​ 	​iex>​ Enum.count(first_half)
	​ 	181
	​ 	​iex>​ ​~​D[2018-03-15] ​in​ first_half
	​ 	true

The Time type contains an hour, a minute, a second, and fractions of a
second. The fraction is stored as a tuple containing microseconds and
the number of significant digits. (The fact that time values track the number of significant digits in the seconds field means that ~T[12:34:56.0] is not equal to ~T[12:34:56.00].)
	​ 	​iex>​ {​:ok​, t1} = Time.new(12, 34, 56)
	​ 	{:ok, ~T[12:34:56]}
	​ 	​iex>​ t2 = ​~​T[12​:34:56​.78]
	​ 	~T[12:34:56.78]
	​ 	​iex>​ t1 == t2
	​ 	false
	​ 	​iex>​ Time.add(t1, 3600)
	​ 	~T[13:34:56.000000]
	​ 	​iex>​ Time.add(t1, 3600, ​:millisecond​)
	​ 	~T[12:34:59.600000]

There are two date/time types: DateTime and NaiveDateTime. The
naive version contains just a date and a time; DateTime adds the
ability to associate a time zone. The ~N[...] sigil constructs
NaiveDateTime structs.

If you are using dates and times in your code, you might want to
augment these built-in types with a third-party library, such as Lau
Taarnskov’s Calendar library.[6]

Names, Source Files, Conventions, Operators, and So On

Elixir identifiers must start with a letter or underscore, optionally followed by letters, digits, and underscores. Here letter means any UTF-8 letter character (optionally with a combining mark) and digit means a UTF-8 decimal-digit character. If you’re using ASCII, this does what you’d expect. The identifiers may end with a question mark or an exclamation mark.

Here are some examples of valid variables:
	​ 	name josé _age まつもと _42 адрес!

And some examples of invalid variables:
	​ 	name• a±2 42

Module, record, protocol, and behavior names start with an uppercase
letter and are BumpyCase. All other identifiers
start with a lowercase letter or an underscore, and by convention use
underscores between words. If the first character is an underscore,
Elixir doesn’t report a warning if the variable is unused in a pattern
match or function parameter list.

By convention, source files use two-character indentation for
nesting—and they use spaces, not tabs, to achieve this.

Comments start with a hash sign (#) and run to the end of the line.

The Elixir distribution comes with a code formatter, which can be used
to convert a source file into the “approved” representation. We’ll look at this here. Most examples in this book follow this format (except where I think it is particularly ugly).
Truth

Elixir has three special values related to Boolean operations: true,
false, and nil. nil is treated as false in Boolean contexts.

(A bit of trivia: all three of these values are aliases for
atoms of the same name, so true is the same as the atom :true.)

In most contexts, any value other than false or nil is treated as
true. We sometimes refer to this as truthy as opposed to true.
Operators

Elixir has a very rich set of operators. Here’s a subset we’ll
use in this book:

	Comparison operators
		​ 	a === b ​# strict equality (so 1 === 1.0 is false)​
	​ 	a !== b ​# strict inequality (so 1 !== 1.0 is true)​
	​ 	a == b ​# value equality (so 1 == 1.0 is true)​
	​ 	a != b ​# value inequality (so 1 != 1.0 is false)​
	​ 	a > b ​# normal comparison​
	​ 	a >= b ​# :​
	​ 	a < b ​# :​
	​ 	a <= b ​# :​

 The ordering comparisons in Elixir are less strict than in many
 languages, as you can compare values of different types. If the
 types are the same or are compatible (for example, 3 > 2 or
 3.0 < 5), the comparison uses natural ordering.
 Otherwise comparison is
 based on type according to this rule:

number < atom < reference < function < port < pid < tuple < map < list < binary
	
	
	
	
	Boolean operators
	
(These operators expect true or false as their first argument.)

		​ 	a ​or​ b ​# true if a is true; otherwise b​
	​ 	a ​and​ b ​# false if a is false; otherwise b​
	​ 	​not​ a ​# false if a is true; true otherwise​

	
	
	
	
	
	
	Relaxed Boolean operators
	
These operators take arguments of any type. Any value apart from
nil or false is interpreted as true.

		​ 	a || b ​# a if a is truthy; otherwise b​
	​ 	a && b ​# b if a is truthy; otherwise a​
	​ 	​!​a ​# false if a is truthy; otherwise true​

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Arithmetic operators
	
+ - * / div rem

	
Integer division yields a floating-point result. Use div(a,b) to
get an integer.

	
rem is the remainder operator. It is called as a function (rem(11,
 3) => 2). It differs from normal modulo operations
 in that the result will have the same sign as the function’s first argument.

	
	
	
	
	
	
	
	
	
	Join operators
		​ 	binary1 <> binary2 ​# concatenates two binaries (Later we'll​
	​ 	 ​# see that binaries include strings.)​
	​ 	list1 ++ list2 ​# concatenates two lists​
	​ 	list1 -- list2 ​# removes elements of list 2 from a copy of list 1​

	
	The in operator
		​ 	a ​in​ enum ​# tests if a is included in enum (for example,​
	​ 	 ​# a list, a range, or a map). For maps, a should​
	​ 	 ​# be a {key, value} tuple.​

Variable Scope

Elixir is lexically scoped. The basic unit of scoping is the function
body. Variables defined in a function (including its parameters) are
local to that function. In addition, modules define a scope for local
variables, but these are accessible only at the top level of that
module, and not in functions defined in the module.
Do-block Scope

Most languages let you group together multiple code statements and
treat them as a single code block. Often languages use braces for
this. Here’s an example in C:
	​ 	​int​ line_no = 50;
	​ 	
	​ 	​/* */​
	​ 	
	​ 	​if​ (line_no == 50) {
	​ 	 printf(​"new-page​​\f​​"​);
	​ 	 line_no = 0;
	​ 	}

Elixir doesn’t really have blocks such as these, but it does have ways of grouping expressions together. The most common of these is the do block:
	​ 	line_no = 50
	​ 	
	​ 	​# ...​
	​ 	
	​ 	​if​ (line_no == 50) ​do​
	​ 	 IO.puts ​"​​new-page\f"​
	​ 	 line_no = 0
	​ 	​end​
	​ 	
	​ 	IO.puts line_no

However, Elixir thinks this is a risky way to write code. In particular, it’s easy to
forget to initialize line_no outside the block, but to then rely on it having a value
after the block. For that reason, you’ll see a warning:
	​ 	​$ ​​elixir​​ ​​back_block.ex​
	​ 	warning: the variable "line_no" is unsafe as it has been set inside one of:
	​ 	case, cond, receive, if, and, or, &&, ||. Please explicitly return the
	​ 	variable value instead. Here's an example:
	​ 	
	​ 	 case integer do
	​ 	 1 -> atom = :one
	​ 	 2 -> atom = :two
	​ 	 end
	​ 	
	​ 	should be written as
	​ 	
	​ 	 atom =
	​ 	 case integer do
	​ 	 1 -> :one
	​ 	 2 -> :two
	​ 	 end
	​ 	
	​ 	Unsafe variable found at:
	​ 	 t.ex:10
	​ 	
	​ 	0

The with Expression

The with expression serves double duty. First, it allows you to define a local
scope for variables. If you need a couple of temporary variables when
calculating something, and you don’t want those variables to leak out into
the wider scope, use with. Second, it gives you some control over
pattern-matching failures.
For example, the /etc/passwd file contains lines such as

	​ 	_installassistant:*:25:25:Install Assistant:/var/empty:/usr/bin/false
	​ 	_lp:*:26:26:Printing Services:/var/spool/cups:/usr/bin/false
	​ 	_postfix:*:27:27:Postfix Mail Server:/var/spool/postfix:/usr/bin/false

The two numbers are the user and group IDs for the given username.

The following code finds the values for the _lp user (and see the sidebar following for some notes on its layout).
basic-types/with-scope.exs
	​ 	content = ​"​​Now is the time"​
	​ 	
	​ 	lp = ​with​ {​:ok​, file} = File.open(​"​​/etc/passwd"​),
	​ 	 content = IO.read(file, ​:all​), ​# note: same name as above​
	​ 	 ​:ok​ = File.close(file),
	​ 	 [_, uid, gid] = Regex.run(​~r/^lp:.*?:(\d+):(\d+)/​m, content)
	​ 	 ​do​
	​ 	 ​"​​Group: ​​#{​gid​}​​, User: ​​#{​uid​}​​"​
	​ 	 ​end​
	​ 	
	​ 	IO.puts lp ​#=> Group: 26, User: 26​
	​ 	IO.puts content ​#=> Now is the time​

A Code Formatting Comparison

The with listing is an example of code that isn’t in the
canonical Elixir format.
If formatted using the built-in tool, it would look
like the following.

basic-types/with-scope-fmt.exs
	​ 	content = ​"​​Now is the time"​
	​ 	
	​ 	lp =
	​ 	 ​with​ {​:ok​, file} = File.open(​"​​/etc/passwd"​),
	​ 	 content = IO.read(file, ​:all​),
	​ 	 ​:ok​ = File.close(file),
	​ 	 [_, uid, gid] = Regex.run(​~r/^_lp:.*?:(\d+):(\d+)/​m, content) ​do​
	​ 	 ​"​​Group: ​​#{​gid​}​​, User: ​​#{​uid​}​​"​
	​ 	 ​end​
	​ 	
	​ 	​# => Group: 26, User: 26​
	​ 	IO.puts(lp)
	​ 	​# => Now is the time​
	​ 	IO.puts(content)

 I’ll let you be the judge of which is
clearer.

The with expression lets us work with what are effectively temporary
variables as we open the file, read its content, close it, and search
for the line we want.
The value of the with is the value of its do parameter.

The inner variable content is local to the with, and does not
affect the variable in the outer scope.
with and Pattern Matching

In the previous example, the head of the with expression
used = for basic pattern matches. If any of these had failed,
a MatchError exception would be raised. But perhaps we’d want to
handle this case in a more elegant way. That’s where the <- operator
comes in. If you use <- instead of = in a with expression, it
performs a match, but if it fails it returns the value that couldn’t be
matched.
	​ 	​iex>​ ​with​ [a|_] <- [1,2,3], ​do​: a
	​ 	1
	​ 	​iex>​ ​with​ [a|_] <- nil, ​do​: a
	​ 	nil

We can use this to let the with in the previous example return nil
if the user can’t be found, rather than raising an exception.
basic-types/with-match.exs
	​ 	result = ​with​ {​:ok​, file} = File.open(​"​​/etc/passwd"​),
	​ 	 content = IO.read(file, ​:all​),
	​ 	 ​:ok​ = File.close(file),
	»	 [_, uid, gid] <- Regex.run(​~r/^xxx:.*?:(\d+):(\d+)/​, content)
	​ 	 ​do​
	​ 	 ​"​​Group: ​​#{​gid​}​​, User: ​​#{​uid​}​​"​
	​ 	 ​end​
	​ 	IO.puts inspect(result) ​#=> nil​

When we try to match the user xxx, Regex.run returns nil. This
causes the match to fail, and the nil becomes the value of the
with.
A Minor Gotcha

Underneath the covers, with is treated by Elixir as if it were a
call to a function or macro. This means that you cannot write this:
	​ 	mean = ​with​ ​# WRONG!​
	​ 	 count = Enum.count(values),
	​ 	 sum = Enum.sum(values)
	​ 	 ​do​
	​ 	 sum/count
	​ 	 ​end​

Instead, you can put the first parameter on the same line as the with:
	​ 	mean = ​with​ count = Enum.count(values),
	​ 	 sum = Enum.sum(values)
	​ 	 ​do​
	​ 	 sum/count
	​ 	 ​end​

or use parentheses:
	​ 	mean = ​with​(
	​ 	 count = Enum.count(values),
	​ 	 sum = Enum.sum(values)
	​ 	 ​do​
	​ 	 sum/count
	​ 	 ​end​)

As with all other uses of do, you can also use the shortcut:
	​ 	mean = ​with​ count = Enum.count(values),
	​ 	 sum = Enum.sum(values),
	​ 	 ​do​: sum/count

End of the Basics

We’ve now covered the low-level ingredients of an Elixir program. In the
next two chapters we’ll discuss how to create anonymous functions, modules, and named functions.

Footnotes

	[4]
	
http://www.pcre.org/

	[5]
	
http://www.iso.org/iso/home/standards/iso8601.htm

	[6]
	
https://github.com/lau/calendar

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	Anonymous functions
	Pattern matching and arguments
	Higher-order functions
	Closures
	The & function literal

 Chapter
 5
Anonymous Functions

Elixir is a functional language, so it’s no surprise functions
are a basic type.

An anonymous function is created using the fn keyword.
	​ 	​fn​
	​ 	 parameter-list -> body
	​ 	 parameter-list -> body ...
	​ 	​end​

Think of fn…end as being a bit like the quotes that surround a
string literal, except here we’re returning a function as a value,
not a string. We can pass that function value to other functions. We
can also invoke it, passing in arguments.

At its simplest, a function has a parameter list and a body, separated by ->.

For example, the following defines a function, binding it to the variable sum,
and then calls it:
	​ 	​iex>​ sum = ​fn​ (a, b) -> a + b ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ sum.(1, 2)
	​ 	3

The first line of code creates a function that takes two parameters
(named a and b). The implementation of the function follows the ->
arrow (in our case it simply adds the two parameters), and the whole
thing is terminated with the keyword end. We store the function in
the variable sum.

On the second line of code, we invoke the function using the syntax
sum.(1,2). The dot indicates the function call, and the arguments
are passed between parentheses. (You’ll have noticed we don’t use a dot
for named function calls—this is a difference between named and
anonymous functions.)

If your function takes no arguments, you still need the parentheses to
call it:
	​ 	​iex>​ greet = ​fn​ -> IO.puts ​"​​Hello"​ ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ greet.()
	​ 	Hello
	​ 	:ok

You can, however, omit the parentheses in a function definition:
	​ 	​iex>​ f1 = ​fn​ a, b -> a * b ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ f1.(5,6)
	​ 	30
	​ 	​iex>​ f2 = ​fn​ -> 99 ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ f2.()
	​ 	99

Functions and Pattern Matching

When we call sum.(2,3), it’s easy to assume we simply
assign 2 to the parameter a and 3 to b. But that word, assign, should ring
some bells. Elixir doesn’t have assignment. Instead it tries to match
values to patterns. (We came across this when we looked at pattern matching and assignment.)

If we write
	​ 	a = 2

then Elixir makes the pattern match by binding a to the value 2. And
that’s exactly what happens when our sum function gets called. If we
pass 2 and 3 as arguments, and Elixir tries to match these
arguments to the parameters a and b (which it does by giving a
the value 2 and b the value
3), it’s the same as when we write
	​ 	{a, b} = {2, 3}

This means we can perform more complex pattern matching when
we call a function. For example, the following function reverses the
order of elements in a two-element tuple:
	​ 	​iex>​ swap = ​fn​ { a, b } -> { b, a } ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ swap.({ 6, 8 })
	​ 	{8, 6}

We’ll use this pattern-matching capability when we look at functions
with multiple implementations in the next section.

Your Turn
	Exercise: Functions-1

Go into IEx. Create and run the functions that do the following:

	list_concat.([:a, :b], [:c, :d]) #=> [:a, :b, :c, :d]
	sum.(1, 2, 3) #=> 6
	pair_tuple_to_list.({ 1234, 5678 }) #=> [1234, 5678]

One Function, Multiple Bodies

A single function definition lets you define different implementations,
depending on the type and contents of the arguments passed. (You
cannot select based on the number of arguments—each clause in the
function definition must have the same number of parameters.)

At its simplest, we can use pattern matching to select which clause to
run. In the example that follows, we know the tuple returned by
File.open has :ok as its first element if the file was opened,
so we write a function that displays either the first line of a
successfully opened file or a simple error message if the file could
not be opened.
	​1: 	​iex>​ handle_open = ​fn​
	​2: 	​...>​ {​:ok​, file} -> ​"​​Read data: ​​#{​IO.read(file, ​:line​)​}​​"​
	​3: 	​...>​ {_, error} -> ​"​​Error: ​​#{​​:file​.format_error(error)​}​​"​
	​4: 	​...>​ ​end​
	​5: 	#Function<12.17052888 in :erl_eval.expr/5>
	​6: 	​iex>​ handle_open.(File.open(​"​​code/intro/hello.exs"​)) ​# this file exists​
	​7: 	"Read data: IO.puts \"Hello, World!\"\n"
	​8: 	​iex>​ handle_open.(File.open(​"​​nonexistent"​)) ​# this one doesn't​
	​9: 	"Error: no such file or directory"

Start by looking inside the function definition. On lines 2 and 3 we define two
separate function bodies. Each takes a single tuple as a
parameter. The first of them requires that the first term in the tuple
is :ok. The second line uses the special variable _ (underscore)
to match any other value for the first term.

Now look at line 6. We call our function,
passing it the result of calling File.open on a file that
exists. This means the function will receive the tuple {:ok,file},
and this matches the clause on line 2. The
corresponding code calls IO.read to read the first line of this
file.

We then call handle_open again, this time with the result of trying
to open a file that does not exist. The tuple that is returned
({:error,:enoent}) is passed to our function, which looks for a
matching clause. It fails on line 2 because
the first term is not :ok, but it succeeds on the next line. The
code in that clause formats the error as a nice string.

Note a couple of other things in this code. On line 3 we call :file.format_error. The :file part
of this refers to the underlying Erlang File module, so we can call
its format_error function. Contrast this with the call to
File.open on line 6. Here the File
part refers to Elixir’s built-in module. This is a good example of the
underlying environment leaking through into Elixir code. It is good
that you can access all the existing Erlang libraries—there are
hundreds of years of effort in there just waiting for you to use. But
it is also tricky because you have to differentiate between Erlang
functions and Elixir functions when you call them.

And finally, this example shows off Elixir’s string
interpolation. Inside a string, the contents of #{...} are
evaluated and the result is substituted back in.
Working with Larger Code Examples

 Our handle_open function is getting uncomfortably
 long to type directly into IEx. One typo, and we’d have to type
 it all in again.

 Instead, let’s use our editor to type it into a file in the same
 directory we were in when we started IEx. Let’s call
 the file handle_open.exs.

first_steps/handle_open.exs
	​ 	handle_open = ​fn​
	​ 	 {​:ok​, file} -> ​"​​First line: ​​#{​IO.read(file, ​:line​)​}​​"​
	​ 	 {_, error} -> ​"​​Error: ​​#{​​:file​.format_error(error)​}​​"​
	​ 	​end​
	​ 	IO.puts handle_open.(File.open(​"​​Rakefile"​)) ​# call with a file that exists​
	​ 	IO.puts handle_open.(File.open(​"​​nonexistent"​)) ​# and then with one that doesn't​

 Now, inside IEx, type this:

	​ 	c ​"​​handle_open.exs"​

 This compiles and runs the code in the given file.

 We can do the same thing from the command line (that is, not
 inside IEx) using this:

	​ 	​$ ​​elixir​​ ​​handle_open.exs​

 We used the file extension .exs for this example. This
 is used for code that we want to run directly from a source
 file (think of the s as meaning script). For files we
 want to compile and use later, we’ll employ the .ex
 extension.

Your Turn
	Exercise: Functions-2

Write a function that takes three arguments. If the first two are
zero, return “FizzBuzz.” If the first is zero, return “Fizz.” If the
second is zero, return “Buzz.” Otherwise return the third
argument. Do not use any language features that we haven’t yet
covered in this book.

	Exercise: Functions-3

The operator rem(a, b) returns the remainder after dividing a by
b. Write a function that takes a single integer (n) and
calls the function in the previous exercise, passing it rem(n,3),
rem(n,5), and n. Call it seven times with the arguments 10, 11, 12,
and so on. You should get “Buzz, 11, Fizz, 13, 14, FizzBuzz, 16.”

(Yes, it’s a FizzBuzz solution with no conditional logic.)[7]

Functions Can Return Functions

Here’s some strange code:
	​ 	​iex>​ fun1 = ​fn​ -> ​fn​ -> ​"​​Hello"​ ​end​ ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ fun1.()
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ fun1.().()
	​ 	"Hello"

The strange thing is the first line. It’s hard to read, so
let’s spread it out.
	​ 	fun1 = ​fn​ ->
	​ 	 ​fn​ ->
	​ 	 ​"​​Hello"​
	​ 	 ​end​
	​ 	 ​end​

The variable fun1 is bound to a function. That function takes no
parameters, and its body is a second function definition. That second
function also takes no parameters, and it evaluates the
string "Hello".

When we call the outer function (using fun1.()), it returns the
inner function. When we call that (fun1.().()) the inner function is
evaluated and “Hello” is returned.

We wouldn’t normally write something such as fun1.().(). But we
might call the outer function and bind the result to a separate
variable. We might also use parentheses to make the inner function more obvious.
	​ 	​iex>​ fun1 = ​fn​ -> (​fn​ -> ​"​​Hello"​ ​end​) ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ other = fun1.()
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ other.()
	​ 	"Hello"

Functions Remember Their Original Environment

Let’s take this idea of nesting functions a little further.
	​ 	​iex>​ greeter = ​fn​ name -> (​fn​ -> ​"​​Hello ​​#{​name​}​​"​ ​end​) ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ dave_greeter = greeter.(​"​​Dave"​)
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ dave_greeter.()
	​ 	"Hello Dave"

Now the outer function has a name parameter. Like any parameter,
name is available for use throughout the body of the function. In
this case, we use it inside the string in the inner function.

When we call the outer function, it returns the inner function
definition. It has not yet substituted the name into the
string. But when we call the inner function (dave_greeter.()), the
substitution takes place and the greeting appears.

But something strange happens here. The inner function uses the outer function’s
name parameter. But by the time
greeter.("Dave") returns, that outer function has finished
executing and the parameter has gone out of scope. And yet when we
run the inner function, it uses that parameter’s value.

This works because functions in Elixir automatically carry with them
the bindings of variables in the scope in which they are defined. In
our example, the variable name is bound in the scope of the outer
function. When the inner function is defined, it inherits this scope
and carries the binding of name around with it. This is a
closure—the scope encloses the bindings of its variables, packaging
them into something that can be saved and used later.

Let’s play with this some more.
Parameterized Functions

In the previous example, the outer function took an argument and the
inner one did not. Let’s try a different example where both take
arguments.
	​ 	​iex>​ add_n = ​fn​ n -> (​fn​ other -> n + other ​end​) ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ add_two = add_n.(2)
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ add_five = add_n.(5)
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ add_two.(3)
	​ 	5
	​ 	​iex>​ add_five.(7)
	​ 	12

Here the inner function adds the value of its parameter other to
the value of the outer function’s parameter n. Each time we call
the outer function, we give it a value for n and it returns a
function that adds n to its own parameter.

Your Turn
	Exercise: Functions-4

Write a function prefix that takes a string. It should return a new
function that takes a second string. When that second function is
called, it will return a string containing the first string, a
space, and the second string.
	​ 	iex> mrs = prefix.(​"​​Mrs"​)
	​ 	​#Function<erl_eval.6.82930912>​
	​ 	iex> mrs.(​"​​Smith"​)
	​ 	​"​​Mrs Smith"​
	​ 	iex> prefix.(​"​​Elixir"​).(​"​​Rocks"​)
	​ 	​"​​Elixir Rocks"​

Passing Functions as Arguments

Functions are just values, so we can pass them to other functions.
	​ 	​iex>​ times_2 = ​fn​ n -> n * 2 ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ apply = ​fn​ (fun, value) -> fun.(value) ​end​
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ apply.(times_2, 6)
	​ 	12

Here, apply is a function that takes a second function and a
value. It returns the result of invoking that second function with the value
as an argument.

We use the ability to pass functions around pretty much
everywhere in Elixir code. For example, the built-in Enum module has
a function called map. It takes two arguments: a collection and a
function. It returns a list that is the result of applying that
function to each element of the collection.
	​ 	​iex>​ list = [1, 3, 5, 7, 9]
	​ 	[1, 3, 5, 7, 9]
	​ 	​iex>​ Enum.map list, ​fn​ elem -> elem * 2 ​end​
	​ 	[2, 6, 10, 14, 18]
	​ 	​iex>​ Enum.map list, ​fn​ elem -> elem * elem ​end​
	​ 	[1, 9, 25, 49, 81]
	​ 	​iex>​ Enum.map list, ​fn​ elem -> elem > 6 ​end​
	​ 	[false, false, false, true, true]

Pinned Values and Function Parameters

When we originally looked at pattern matching, we saw that the pin
operator (^) allowed us to use the current value of a variable in a
pattern. You can use this with function parameters, too.
functions/pin.exs
	​ 	​defmodule​ Greeter ​do​
	​ 	 ​def​ for(name, greeting) ​do​
	​ 	 ​fn​
	​ 	 (^name) -> ​"​​#{​greeting​}​​ ​​#{​name​}​​"​
	​ 	 (_) -> ​"​​I don't know you"​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	mr_valim = Greeter.for(​"​​José"​, ​"​​Oi!"​)
	​ 	
	​ 	IO.puts mr_valim.(​"​​José"​) ​# => Oi! José​
	​ 	IO.puts mr_valim.(​"​​Dave"​) ​# => I don't know you​

Here, the Greeter.for function returns a function with
two heads. The first head matches when its first parameter is the
value of the name passed to for.
The & Notation

The strategy of creating short helper functions is so common that
Elixir provides a shortcut. Let’s look at it in use before we explore
what’s going on.
	​ 	​iex>​ add_one = &(&1 + 1) ​# same as add_one = fn (n) -> n + 1 end​
	​ 	#Function<6.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ add_one.(44)
	​ 	45
	​ 	​iex>​ square = &(&1 * &1)
	​ 	#Function<6.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ square.(8)
	​ 	64
	​ 	​iex>​ speak = &(IO.puts(&1))
	​ 	&IO.puts/1
	​ 	​iex>​ speak.(​"​​Hello"​)
	​ 	Hello
	​ 	:ok

The & operator converts the expression that follows into a
function. Inside that expression, the placeholders &1, &2, and so
on correspond to the first, second, and subsequent parameters of the
function. So &(&1 + &2) will be converted to fn p1, p2 -> p1
+ p2 end.

If you think that’s clever, take a look at the speak line in the
previous code. Normally Elixir would have generated an anonymous
function, so &(IO.puts(&1)) would become fn x -> IO.puts(x) end.
But Elixir noticed that the body of the anonymous function was simply
a call to a named function (the IO function puts) and that the
parameters were in the correct order (that is, the first parameter to
the anonymous function was the first parameter to the named function,
and so on). So Elixir optimized away the anonymous function, replacing
it with a direct reference to the function, IO.puts/1.

For this to work, the arguments must be in the correct order:
	​ 	​iex>​ rnd = &(Float.round(&1, &2))
	​ 	&Float.round/2
	​ 	​iex>​ rnd = &(Float.round(&2, &1))
	​ 	#Function<12.17052888 in :erl_eval.expr/5>

You might see references to Erlang pop up when you define functions
this way. That’s because Elixir runs on the Erlang VM. There’s more
evidence of this if you try something like &abs(&1). Here Elixir
maps your use of the abs function directly into the underlying
Erlang library, and returns &:erlang.abs/1.

Because [] and {} are operators in Elixir,
literal lists and tuples can also be turned into
functions. Here’s a function that returns a tuple
containing the quotient and remainder of dividing two integers:
	​ 	​iex>​ divrem = &{ div(&1,&2), rem(&1,&2) }
	​ 	#Function<12.17052888 in :erl_eval.expr/5>
	​ 	​iex>​ divrem.(13, 5)
	​ 	{2, 3}

Finally, the & capture operator works with string (and string-like)
literals:
	​ 	​iex>​ s = &​"​​bacon and ​​#{​&1​}​​"​
	​ 	#Function<6.99386804/1 in :erl_eval.expr/5>
	​ 	​iex>​ s.(​"​​custard"​)
	​ 	"bacon and custard"
	​ 	
	​ 	​iex>​ match_end = &​~r/.*#{&1}$/​
	​ 	#Function<6.99386804/1 in :erl_eval.expr/5>
	​ 	​iex>​ ​"​​cat"​ =~ match_end.(​"​​t"​)
	​ 	true
	​ 	​iex>​ ​"​​cat"​ =~ match_end.(​"​​!"​)
	​ 	false

There’s a second form of the & function capture operator. You can
give it the name and arity (number of parameters) of an existing
function, and it will return an anonymous function that calls it. The
arguments you pass to the anonymous function will in turn be passed to
the named function. We’ve already seen this: when we entered
&(IO.puts(&1)) into iex, it displayed the result as &IO.puts/1. In
this case, puts is a function in the IO module, and it takes one
argument. The Elixir way of naming this is IO.puts/1. If we place
an & in front of this, we wrap it in a function. Here are some
other examples:
	​ 	​iex>​ l = &length/1
	​ 	&:erlang.length/1
	​ 	​iex>​ l.([1,3,5,7])
	​ 	4
	​ 	
	​ 	​iex>​ len = &Enum.count/1
	​ 	&Enum.count/1
	​ 	​iex>​ len.([1,2,3,4])
	​ 	4
	​ 	
	​ 	​iex>​ m = &Kernel.min/2 ​# This is an alias for the Erlang function​
	​ 	&:erlang.min/2
	​ 	​iex>​ m.(99,88)
	​ 	88

This works with named functions we write, as well (but we
haven’t covered how to write them yet).

The & shortcut gives us a wonderful way to pass functions to other
functions.

	​ 	​iex>​ Enum.map [1,2,3,4], &(&1 + 1)
	​ 	[2, 3, 4, 5]
	​ 	​iex>​ Enum.map [1,2,3,4], &(&1 * &1)
	​ 	[1, 4, 9, 16]
	​ 	​iex>​ Enum.map [1,2,3,4], &(&1 < 3)
	​ 	[true, true, false, false]

Your Turn
	Exercise: Functions-5

Use the & notation to rewrite the following:
	Enum.map [1,2,3,4], fn x -> x + 2 end
	Enum.each [1,2,3,4], fn x -> IO.inspect x end

Functions Are the Core

At the start of the book, we said the basis of programming is
transforming data. Functions are the little engines that perform that
transformation. They are at the very heart of Elixir.

So far we’ve been looking at anonymous functions—although we can bind
them to variables, the functions themselves have no names.
Elixir also has named functions. In the next chapter we’ll cover how to
work with them.

Footnotes

	[7]
	
http://c2.com/cgi/wiki?FizzBuzzTest

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	Modules, the basic units of code
	Defining public and private named functions
	Guard clauses
	Module directives and attributes
	Calling functions in Erlang modules

 Chapter
 6
Modules and Named Functions

Once a program grows beyond a couple of lines, you’ll want to
structure it. Elixir makes this easy. You break your code into named
functions and organize these functions into modules. In fact, in
Elixir named functions must be written inside modules.

Let’s look at a simple example. Navigate to a working directory and
create an Elixir source file called times.exs.
mm/times.exs
	​ 	​defmodule​ Times ​do​
	​ 	 ​def​ double(n) ​do​
	​ 	 n * 2
	​ 	 ​end​
	​ 	​end​

Here we have a module named Times. It contains a single function,
double. Because our function takes a single argument and because
the number of arguments forms part of the way we identify Elixir
functions, you’ll see this function name written as double/1.

Compiling a Module

Let’s look at two ways to compile this file and load it into
IEx. First, if you’re at the command line, you can do this:
	​ 	$ iex times.exs
	​ 	​iex>​ Times.double(4)
	​ 	8

Give IEx a source file’s name, and it compiles and loads the file
before it displays a prompt.

If you’re already in IEx, you can use the c helper
to compile your file without returning to the command line.
	​ 	​iex>​ c ​"​​times.exs"​
	​ 	[Times]
	​ 	​iex>​ Times.double(4)
	​ 	8
	​ 	​iex>​ Times.double(123)
	​ 	246

The line c "times.exs" compiles your source file and loads it into
IEx. We then call the double function in the Times module a couple of
times using Times.double.

What happens if we make our function fail by passing it a string rather
than a number?
	​ 	​iex>​ Times.double(​"​​cat"​)
	​ 	​**​ (ArithmeticError) bad argument in arithmetic expression
	​ 	 times.exs:3: Times.double/1

An exception (ArithmeticError) gets raised, and we see a stack
backtrace. The first line tells us what went wrong (we tried to
perform arithmetic on a string), and the next line tells us where. But
look at what it writes for the name of our function: Times.double/1.

In Elixir a named function is identified by both its name and its
number of parameters (its arity). Our double function takes
one parameter, so Elixir knows it as double/1. If we had another
version of double that took three parameters, it would be known as
double/3. These two functions
are totally separate as far as Elixir is concerned. But from a human
perspective, you’d imagine that if two functions have the same name
they are somehow related, even if they have a different number of
parameters. For that reason, don’t use the same name for two functions
that do unrelated things.

The Function’s Body Is a Block

The do…end block is one way of grouping expressions and passing
them to other code. They are used in module and named function
definitions, control structures…any place in Elixir where code
needs to be handled as an entity.

However, do…end is not actually the underlying syntax. The actual
syntax looks like this:
	​ 	​def​ double(n), ​do​: n * 2

You can pass multiple lines to do: by grouping
them with parentheses.
	​ 	​def​ greet(greeting, name), ​do​: (
	​ 	 IO.puts greeting
	​ 	 IO.puts ​"​​How're you doing, ​​#{​name​}​​?"​
	​)

The do…end form is just a lump of syntactic sugar—during
compilation it is turned into the do: form. (And the do: form
itself is nothing special; it is simply a term in a keyword list.)
Typically people use the do: syntax for single-line blocks, and
do…end for multiline ones.

This means our times example would probably be written as follows:
mm/times1.exs
	​ 	​defmodule​ Times ​do​
	​ 	 ​def​ double(n), ​do​: n * 2
	​ 	​end​

We could even write it as
	​ 	​defmodule​ Times, ​do​: (​def​ double(n), ​do​: n*2)

(but please don’t).

Your Turn
	Exercise: ModulesAndFunctions-1

Extend the Times module with a triple function that multiplies its parameter by three.

	Exercise: ModulesAndFunctions-2

Run the result in IEx. Use both techniques to compile the file.

	Exercise: ModulesAndFunctions-3

Add a quadruple function. (Maybe it could call the double function.…)

Function Calls and Pattern Matching

In the previous chapter we covered how anonymous functions use pattern
matching to bind their parameter list to the passed arguments. The
same is true of named functions. The difference is that we write the function
multiple times, each time with its own parameter
list and body. Although this looks like multiple function definitions,
purists will tell you it’s multiple clauses of the same
definition (and they’d be right).

When you call a named function, Elixir tries to match your arguments
with the parameter list of the first definition (clause). If it cannot
match them, it tries the next definition of the same function
(remember, this must have the same arity) and checks to see
if it matches. It continues until it runs out of candidates.

Let’s play with this. The factorial of n, written n!, is the product of all
numbers from 1 to n. 0! is defined to be 1.

Another way of expressing this is to say
	factorial(0) → 1
	factorial(n) → n * factorial(n-1)

This is a specification of the concept of factorial, but it is
also close to an
Elixir implementation:
mm/factorial1.exs
	​ 	​defmodule​ Factorial ​do​
	​ 	 ​def​ of(0), ​do​: 1
	​ 	 ​def​ of(n), ​do​: n * of(n-1)
	​ 	​end​

Here we have two definitions of the same function. If we call
Factorial.of(2), Elixir matches the 2 against the first function’s
parameter, 0. This fails, so it tries the second definition, which
succeeds when Elixir binds 2 to n. It then evaluates the body of
this function, which calls Factorial.of(1). The same process
applies, and the second definition is run. This, in turn, calls
Factorial.of(0), which is matched by the first function
definition. This function returns 1 and the recursion ends. Elixir now
unwinds the stack, performing all the multiplications, and returns the
answer. This factorial implementation works, but it could be
significantly improved. We’ll do that improvement when we look at
tail recursion.

Let’s play with this code:
	​ 	​iex>​ c ​"​​factorial1.exs"​
	​ 	[Factorial]
	​ 	​iex>​ Factorial.of(3)
	​ 	6
	​ 	​iex>​ Factorial.of(7)
	​ 	5040
	​ 	​iex>​ Factorial.of(10)
	​ 	3628800
	​ 	​iex>​ Factorial.of(1000)
	​ 	40238726007709377354370243392300398571937486421071463254379991042993851239862
	​ 	90205920442084869694048004799886101971960586316668729948085589013238296699445
	​ 	...
	​ 	00624271243416909004153690105933983835777939410970027753472000000000000000000
	​ 	000
	​ 	000
	​ 	000

This pattern of design and coding is very common in Elixir (and almost
all functional languages). First look for the simplest possible case,
one that has a definite answer. This will be the anchor. Then look for
a recursive solution that will end up calling the anchor
case.

Here are a couple of examples:

Sum of the first n numbers
	The sum of the first 0 numbers is 0.
	The sum of the numbers up to n is n + the sum of the numbers
up to n–1.

Length of a list
	The length of an empty list is 0.
	The length of any other list is 1 + the length of the tail of that
list.

One point worth stressing: the order of these clauses can make a
difference when you translate them into code. Elixir tries functions
from the top down, executing the first match. So the following code
will not work:
mm/factorial1-bad.exs
	​ 	​defmodule​ BadFactorial ​do​
	​ 	 ​def​ of(n), ​do​: n * of(n-1)
	​ 	 ​def​ of(0), ​do​: 1
	​ 	​end​

The first function definition will always match and the second will
never be called. But Elixir has you covered—when you try to compile
this, you’ll get a warning:
	​ 	​iex>​ c ​"​​factorial1-bad.exs"​
	​ 	.../factorial1-bad.ex:3: this clause cannot match because a previous clause at
	​ 	 line 2 always matches

One more thing: when you have multiple implementations of the same
function, they should be adjacent in the source file.

Your Turn
	Exercise: ModulesAndFunctions-4

Implement and run a function sum(n) that uses recursion to
calculate the sum of the integers from 1 to n. You’ll need to
write this function inside a module in a separate file. Then load up
IEx, compile that file, and try your function.

	Exercise: ModulesAndFunctions-5

Write a function gcd(x,y) that finds the greatest common divisor
between two nonnegative integers. Algebraically, gcd(x,y) is x
if y is zero; it’s gcd(y, rem(x,y)) otherwise.

Guard Clauses

We’ve seen that pattern matching allows Elixir to decide which
function to invoke based on the arguments passed. But what if we need
to distinguish based on the argument types or on some test involving their
values? For this, use guard clauses. These are predicates that
are attached to a function definition using one or more when
keywords. When doing pattern matching, Elixir first does the
conventional parameter-based match and then evaluates any when
predicates, executing the function only if at least one predicate is
true.
mm/guard.exs
	​ 	​defmodule​ Guard ​do​
	​ 	 ​def​ what_is(x) ​when​ is_number(x) ​do​
	​ 	 IO.puts ​"​​#{​x​}​​ is a number"​
	​ 	 ​end​
	​ 	 ​def​ what_is(x) ​when​ is_list(x) ​do​
	​ 	 IO.puts ​"​​#{​inspect(x)​}​​ is a list"​
	​ 	 ​end​
	​ 	 ​def​ what_is(x) ​when​ is_atom(x) ​do​
	​ 	 IO.puts ​"​​#{​x​}​​ is an atom"​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	Guard.what_is(99) ​# => 99 is a number​
	​ 	Guard.what_is(​:cat​) ​# => cat is an atom​
	​ 	Guard.what_is([1,2,3]) ​# => [1,2,3] is a list​

Recall our factorial
example:
mm/factorial1.exs
	​ 	​defmodule​ Factorial ​do​
	​ 	 ​def​ of(0), ​do​: 1
	​ 	 ​def​ of(n), ​do​: n * of(n-1)
	​ 	​end​

If we were to pass it a negative number, it would loop forever—no
matter how many times you decrement n, it will never be zero. So it
is a good idea to add a guard clause to stop this from happening.
mm/factorial2.exs
	​ 	​defmodule​ Factorial ​do​
	​ 	 ​def​ of(0), ​do​: 1
	​ 	 ​def​ of(n) ​when​ is_integer(n) ​and​ n > 0 ​do​
	​ 	 n * of(n-1)
	​ 	 ​end​
	​ 	​end​

If you run this with a negative argument, none of the functions will match:
	​ 	​iex>​ c ​"​​factorial2.exs"​
	​ 	[Factorial]
	​ 	​iex>​ Factorial.of -100
	​ 	​**​ (FunctionClauseError) no function clause matching in Factorial.of/1...

Notice we’ve also added a type constraint: the parameter must be
an integer.
Guard Clauses vs. Conditional Logic

Have another look at our factorial function:
	​ 	​def​ of(0), ​do​: 1
	​ 	​def​ of(n) ​when​ is_integer(n) ​and​ n > 0 ​do​
	​ 	 n * of(n-1)
	​ 	​end​

You might think of writing the code like this:
	​ 	​def​ of(0), ​do​: 1
	​ 	​def​ of(n) ​do​
	​ 	 ​if​ n < 0 ​do​
	​ 	 ​raise​ ​"​​factorial called on a negative number"​
	​ 	 ​else​
	​ 	 n * of(n-1)
	​ 	 ​end​
	​ 	​end​

Logically these are the same, right? Both versions raise an exception
when passed a negative number.

But they aren’t. In the second case, the of/1 function is defined
for any input. But in the first case, it isn’t defined at all for
negative parameters. And that’s what we really want: the first example
makes it explicit that the domain of our function is nonnegative
integers.

The difference between the two examples is subtle, but the first
communicates what we want more accurately.

Guard-Clause Limitations

You can write only a subset of Elixir expressions in guard
clauses. The following list comes from the Getting Started
guide.[8]
	
	Comparison operators
	
==, !=, ===, !==, >, <, <=, >=

	
	
	Boolean and negation operators
	
or, and, not, !. Note that || and && are not allowed.

	
	Arithmetic operators
	
+, -, *, /

	
	Join operators
	
<> and ++, as long as the left side is a literal

	
	The in operator
	
Membership in a collection or range

	
	
	
	Type-check functions
	
These built-in Erlang functions return true if their argument is a given
type. You can find their documentation online.[9]

		is_atom
	is_binary
	is_bitstring
	is_boolean
	is_exception
	is_float

	is_function
	is_integer
	is_list
	is_map
	is_number
	is_pid

	is_port
	is_record
	is_reference
	is_tuple
	
	

	Other functions
	
These built-in functions return values (not true or false). Their
documentation is online, on the same page as the type-check
functions.

		abs(number)
	bit_size(bitstring)
	byte_size(bitstring)
	div(number,number)

	elem(tuple, n)
	float(term)
	hd(list)
	length(list)

	node()
	node(pid|ref|port)
	rem(number,number)
	round(number)

	self()
	tl(list)
	trunc(number)
	tuple_size(tuple)

Default Parameters

When you define a named function, you can give a default value to any
of its parameters by using the syntax param \\ value. When you call
a function that is defined with default parameters, Elixir compares
the number of arguments you are passing with the number of required
parameters for the function. If you’re passing fewer arguments than
the number of required parameters, then there’s no match. If the two
numbers are equal, then the required parameters take the values of the
passed arguments, and the other parameters take their default
values. If the count of passed arguments is greater than the number of
required parameters, Elixir uses the excess to override the default
values of some or all parameters. Parameters are matched left to
right.
mm/default_params.exs
	​ 	​defmodule​ Example ​do​
	​ 	 ​def​ func(p1, p2 \\ 2, p3 \\ 3, p4) ​do​
	​ 	 IO.inspect [p1, p2, p3, p4]
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	Example.func(​"​​a"​, ​"​​b"​) ​# => ["a",2,3,"b"]​
	​ 	Example.func(​"​​a"​, ​"​​b"​, ​"​​c"​) ​# => ["a","b",3,"c"]​
	​ 	Example.func(​"​​a"​, ​"​​b"​, ​"​​c"​, ​"​​d"​) ​# => ["a","b","c","d"]​

Default arguments can behave surprisingly when Elixir does pattern
matching. For example, compile the following:
	​ 	​def​ func(p1, p2 \\ 2, p3 \\ 3, p4) ​do​
	​ 	 IO.inspect [p1, p2, p3, p4]
	​ 	​end​
	​ 	
	​ 	​def​ func(p1, p2) ​do​
	​ 	 IO.inspect [p1, p2]
	​ 	​end​

and you’ll get this error:
	​ 	** (CompileError) default_params.exs:7: def func/2 conflicts with
	​ 	 defaults from def func/4

That’s because the first function definition (with the default
parameters) matches any call with two, three, or four arguments.

There’s one more thing with default parameters. Here’s a function with
multiple heads that also has a default parameter:
mm/default_params1.exs
	​ 	​defmodule​ DefaultParams1 ​do​
	​ 	
	​ 	 ​def​ func(p1, p2 \\ 123) ​do​
	​ 	 IO.inspect [p1, p2]
	​ 	 ​end​
	​ 	
	​ 	 ​def​ func(p1, 99) ​do​
	​ 	 IO.puts ​"​​you said 99"​
	​ 	 ​end​
	​ 	
	​ 	​end​

If you compile this, you’ll get an error:
	​ 	warning: definitions with multiple clauses and default values require a
	​ 	function head. Instead of this:
	​ 	
	​ 	 def foo(:first_clause, b \\ :default) do ... end
	​ 	 def foo(:second_clause, b) do ... end
	​ 	
	​ 	one should write this:
	​ 	
	​ 	 def foo(a, b \\ :default)
	​ 	 def foo(:first_clause, b) do ... end
	​ 	 def foo(:second_clause, b) do ... end
	​ 	
	​ 	def func/2 has multiple clauses and defines defaults in a clause with a body
	​ 	 code/mm/default_params1.exs:8
	​ 	
	​ 	warning: variable p1 is unused
	​ 	 code/mm/default_params1.exs:8
	​ 	
	​ 	warning: this clause cannot match because a previous clause at
	​ 	 line 4 always matches code/mm/default_params1.exs:8

The intent is to reduce confusion that can arise with
defaults. Add a function head with no body that contains the
default parameters, and use regular parameters for the rest. The
defaults will apply to all calls to the function.

mm/default_params2.exs
	​ 	​defmodule​ Params ​do​
	​ 	
	​ 	 ​def​ func(p1, p2 \\ 123)
	​ 	
	​ 	 ​def​ func(p1, p2) ​when​ is_list(p1) ​do​
	​ 	 ​"​​You said ​​#{​p2​}​​ with a list"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ func(p1, p2) ​do​
	​ 	 ​"​​You passed in ​​#{​p1​}​​ and ​​#{​p2​}​​"​
	​ 	 ​end​
	​ 	
	​ 	​end​
	​ 	
	​ 	IO.puts Params.func(99) ​# You passed in 99 and 123​
	​ 	IO.puts Params.func(99, ​"​​cat"​) ​# You passed in 99 and cat​
	​ 	IO.puts Params.func([99]) ​# You said 123 with a list​
	​ 	IO.puts Params.func([99], ​"​​dog"​) ​# You said dog with a list​

Your Turn
	Exercise: ModulesAndFunctions-6

I’m thinking of a number between 1 and 1000.…

The most efficient
way to find the number is to guess halfway between the low and high
numbers of the range. If our guess is too big, then the answer lies
between the bottom of the range and one less than our guess. If our guess
is too small, then the answer lies between one more than our guess
and the end of the range.

Your API will be guess(actual, range), where range
is an Elixir range. Your output should look similar to this:
	​ 	iex> Chop.guess(273, 1..1000)
	​ 	Is it 500
	​ 	Is it 250
	​ 	Is it 375
	​ 	Is it 312
	​ 	Is it 281
	​ 	Is it 265
	​ 	Is it 273
	​ 	273

Hints:
	
You may need to implement helper functions with an
additional parameter (the currently guessed number).

	
The div(a,b) function performs integer division.

	
Guard clauses are your friends.

	
Patterns can match the low and high parts of a range
(a..b=4..8).

Private Functions

The defp macro defines a private function—one that can be called only within
the module that declares it.

You can define private functions with multiple heads, just as you can
with def. However, you cannot have some heads private and others
public. That is, the following code is not valid:

	​ 	​def​ fun(a) ​when​ is_list(a), ​do​: true
	​ 	​defp​ fun(a), ​do​: false

The Amazing Pipe Operator: |>

I’ve saved the best for last, at least when it comes to functions.

We’ve all seen code like this:
	​ 	people = DB.find_customers
	​ 	orders = Orders.for_customers(people)
	​ 	tax = sales_tax(orders, 2018)
	​ 	filing = prepare_filing(tax)

Bread-and-butter programming. We did it because the alternative was to
write
	​ 	filing = prepare_filing(sales_tax(Orders.for_customers(DB.find_customers), 2018))

and that’s the kind of code that you use to get kids to eat their
vegetables. Not only is it hard to read, but you have to read it
inside out if you want to see the order in which things get done.

Elixir has a better way of writing it:
	​ 	filing = DB.find_customers
	​ 	 |> Orders.for_customers
	​ 	 |> sales_tax(2018)
	​ 	 |> prepare_filing

The |> operator takes the result of the expression to its left and
inserts it as the first parameter of the function invocation to its
right. So the list of customers the first call returns becomes the
argument passed to the for_customers function. The resulting list of
orders becomes the first argument to sales_tax, and the given
parameter, 2018, becomes the second.

val |> f(a,b) is basically the same as calling f(val,a,b), and
	​ 	list
	​ 	|> sales_tax(2018)
	​ 	|> prepare_filing

is the same as prepare_filing(sales_tax(list, 2018)).

In the previous example, I wrote each term in the expression on a
separate line, and that’s perfectly valid Elixir. But you can also
chain terms on the same line:
	​ 	​iex>​ (1..10) |> Enum.map(&(&1*&1)) |> Enum.filter(&(&1 < 40))
	​ 	[1, 4, 9, 16, 25, 36]

Note that I had to use parentheses in that code—the & shortcut and
the pipe operator fight otherwise.

Let me repeat that—you should always use parentheses around function
parameters in pipelines.

The key aspect of the pipe operator is that it lets you
write code that pretty much follows your spec’s form. For the
sales-tax example, you might have jotted this on some paper:
	Get the customer list.
	Generate a list of their orders.
	Calculate tax on the orders.
	Prepare the filing.

To take this from a napkin spec to running code, you just put |>
between the items and implement each as a function.
	​ 	DB.find_customers
	​ 	 |> Orders.for_customers
	​ 	 |> sales_tax(2018)
	​ 	 |> prepare_filing

Programming is transforming data, and the |> operator makes that
transformation explicit.

And now this book’s subtitle makes sense.

Modules

Modules provide namespaces for things you define. We’ve already seen
them encapsulating named functions. They also act as wrappers for
macros, structs, protocols, and other modules.

If we want to reference a function defined in a module from outside
that module, we need to prefix the reference with the module’s
name. We don’t need that prefix if code references something inside
the same module as itself, as in the following example:
	​ 	​defmodule​ Mod ​do​
	​ 	 ​def​ func1 ​do​
	​ 	 IO.puts ​"​​in func1"​
	​ 	 ​end​
	​ 	 ​def​ func2 ​do​
	​ 	 func1
	​ 	 IO.puts ​"​​in func2"​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	Mod.func1
	​ 	Mod.func2

func2 can call func1 directly because it is inside the same
module. Outside the module, you have to use the fully qualified name,
Mod.func1.

Just as you do in your favorite language, Elixir programmers use
nested modules to impose structure for readability and reuse. After
all, every programmer is a library writer.

To access a function in a nested module from the outside scope, prefix it
with all the module names. To access it within the containing module,
 use either the fully qualified name or just the inner module
name as a prefix.
	​ 	​defmodule​ Outer ​do​
	​ 	 ​defmodule​ Inner ​do​
	​ 	 ​def​ inner_func ​do​
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ outer_func ​do​
	​ 	 Inner.inner_func
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	Outer.outer_func
	​ 	Outer.Inner.inner_func

Module nesting in Elixir is an illusion—all modules are
defined at the top level. When we define a module inside another,
Elixir simply prepends the outer module name to the inner module
name, putting a dot between the two. This means we can directly
define a nested module.
	​ 	​defmodule​ Mix.Tasks.Doctest ​do​
	​ 	 ​def​ run ​do​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	Mix.Tasks.Doctest.run

It also means there’s no particular relationship between the modules
Mix and Mix.Tasks.Doctest.
Directives for Modules

Elixir has three directives that simplify working with modules. All
three are executed as your program runs, and the effect of all three
is lexically scoped—it starts at the point the directive is
encountered, and stops at the end of the enclosing scope. This means
a directive in a module definition takes effect from the place
you wrote it until the end of the module; a directive in a function
definition runs to the end of the function.
The import Directive

The import directive brings a module’s functions and/or macros
into the current scope. If you use a particular module a lot in
your code, import can cut down the clutter in your source files by
eliminating the need to repeat the module name time and again.

For example, if you import the flatten
function from the List module, you’d be able to call it in your code
without having to specify the module name.
mm/import.exs
	​ 	​defmodule​ Example ​do​
	​ 	 ​def​ func1 ​do​
	​ 	 List.flatten [1,[2,3],4]
	​ 	 ​end​
	​ 	 ​def​ func2 ​do​
	​ 	 ​import​ List, ​only:​ [​flatten:​ 1]
	​ 	 flatten [5,[6,7],8]
	​ 	 ​end​
	​ 	​end​

The full syntax of import is
	​ 	import Module [, only:|except:]

The optional second parameter lets you control which functions or
macros are imported. You write only: or except:, followed by a list
of name: arity pairs. It is a good idea to use
import in the smallest possible enclosing scope and to use only:
to import just the functions you need.
	​ 	​import​ List, ​only:​ [​flatten:​ 1, ​duplicate:​ 2]

Alternatively, you can give only: one of the atoms :functions or
:macros, and import will bring in only functions or macros.
The alias Directive

The alias directive creates an alias for a module. One obvious use is to
cut down on typing.
	​ 	​defmodule​ Example ​do​
	​ 	 ​def​ compile_and_go(source) ​do​
	​ 	 alias My.Other.Module.Parser, ​as:​ Parser
	​ 	 alias My.Other.Module.Runner, ​as:​ Runner
	​ 	 source
	​ 	 |> Parser.parse()
	​ 	 |> Runner.execute()
	​ 	 ​end​
	​ 	​end​

We could have abbreviated these alias directives to
	​ 	alias My.Other.Module.Parser
	​ 	alias My.Other.Module.Runner

because the as: parameters default to the last
part of the module name. We could even take this further, and do this:
	​ 	alias My.Other.Module.{Parser, Runner}

The require Directive

You require a module if you want to use any macros it defines.
This ensures that the macro definitions are available when your code is compiled.
We’ll talk about require
when we discuss macros.

Module Attributes

Elixir modules each have associated metadata. Each item of metadata is
called an attribute of the module and is identified by a
name. Inside a module, you can access these attributes by prefixing
the name with an at sign (@).
You give an attribute a value using the syntax
	​ 	@name value

This works only at the top level of a module—you can’t set an
attribute inside a function definition. You can, however, access
attributes inside functions.
mm/attributes.exs
	​ 	​defmodule​ Example ​do​
	​ 	 @author ​"​​Dave Thomas"​
	​ 	 ​def​ get_author ​do​
	​ 	 @author
	​ 	 ​end​
	​ 	​end​
	​ 	IO.puts ​"​​Example was written by ​​#{​Example.get_author​}​​"​

You can set the same attribute multiple times in a module. If you
access that attribute in a named function in that module, the value you
see will be the value in effect when the function is defined.
mm/attributes1.exs
	​ 	​defmodule​ Example ​do​
	​ 	 @attr ​"​​one"​
	​ 	 ​def​ first, ​do​: @attr
	​ 	 @attr ​"​​two"​
	​ 	 ​def​ second, ​do​: @attr
	​ 	​end​
	​ 	IO.puts ​"​​#{​Example.second​}​​ ​​#{​Example.first​}​​"​ ​# => two one​

These attributes are not variables in the conventional sense. Use them
for configuration and metadata only. (Many Elixir programmers employ them
where Java or Ruby programmers might use constants.)

Module Names: Elixir, Erlang, and Atoms

When we write modules in Elixir, they have names such as String or
PhotoAlbum. We call functions in them using calls such as
String.length("abc").

What’s happening here is subtle. Internally, module names are
just atoms. When you write a name starting with an uppercase letter,
such as IO, Elixir converts it internally into an atom of the same name with Elixir. prepended. So IO becomes Elixir.IO and Dog becomes Elixir.Dog.
	​ 	​iex>​ is_atom IO
	​ 	true
	​ 	​iex>​ to_string IO
	​ 	"Elixir.IO"
	​ 	​iex>​ ​:"Elixir.IO"​ === IO
	​ 	true

So a call to a function in a module is really an atom followed by a
dot followed by the function name. And, indeed, we can call functions
like this:
	​ 	​iex>​ IO.puts 123
	​ 	123
	​ 	:ok
	​ 	​iex>​ ​:"Elixir.IO"​.puts 123
	​ 	123
	​ 	:ok

and even
	​ 	​iex>​ my_io = IO
	​ 	IO
	​ 	​iex>​ my_io.puts 123
	​ 	123
	​ 	:ok

Calling a Function in an Erlang Library

The Erlang conventions for names are different—variables start with an
uppercase letter and atoms are simple lowercase names. So, for
example, the Erlang module timer is called just that, the atom
timer. In Elixir we write that as :timer.
 If you want to refer to the tc function in
timer, you’d write :timer.tc. (Note the colon at the start.)

Say we want to output a floating-point
number in a three-character-wide field with one decimal place. Erlang has a
function for this. A search for erlang format takes us to the
description of the format function in the Erlang io
module.[10]

Reading the description, we see that Erlang expects us to call
io.format. So, in Elixir we simply change the Erlang module name to an
Elixir atom:
	​ 	​iex>​ ​:io​.format(​"​​The number is ~3.1f~n"​, [5.678])
	​ 	The number is 5.7
	​ 	:ok

Finding Libraries

If you’re looking for a library to use in your app, you’ll want to
look first for existing Elixir modules. The built-in ones are
documented on the Elixir website,[11] and others are listed at
http://hex.pm and on GitHub (search for elixir).

If that fails, search for a built-in Erlang library
or search the web.[12] If you find something written in Erlang, you’ll be
able to use it in your project (we’ll cover how in the chapter on
projects,). But be aware that the
Erlang documentation for a library follows Erlang
conventions. Variables start with uppercase letters, and identifiers
that start with a lowercase letter are atoms (so Erlang would say
tomato and Elixir would say :tomato). A summary of the
differences between Elixir and Erlang is available online.[13]

Now that we’ve looked at functions, let’s move on to the data they
manipulate. And where better to start than with lists? They’re the
subject of the next chapter.

Your Turn
	Exercise: ModulesAndFunctions-7

Find the library functions to do the following, and then use each in
IEx. (If the word Elixir or Erlang appears at the end of the
challenge, then you’ll find the answer in that set of libraries.)
	
Convert a float to a string with two decimal digits. (Erlang)

	
Get the value of an operating-system environment variable. (Elixir)

	
Return the extension component of a file name (so return .exs if
given "dave/test.exs"). (Elixir)

	
Return the process’s current working directory. (Elixir)

	
Convert a string containing JSON into Elixir data structures. (Just
find; don’t install.)

	
Execute a command in your operating system’s shell.

Footnotes

	[8]
	
http://elixir-lang.org/getting-started/case-cond-and-if.html#expressions-in-guard-clauses

	[9]
	
http://erlang.org/doc/man/erlang.html#is_atom-1

	[10]
	
http://erlang.org/doc/man/io.html#format-2

	[11]
	
http://elixir-lang.org/docs/

	[12]
	
http://erlang.org/doc/ and
 http://erldocs.com/19.0/ (Note that the latter is slightly
 out of date.)

	[13]
	
http://elixir-lang.org/crash-course.html

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	The recursive structure of lists
	Traversing and building lists
	Accumulators
	Implementing map and reduce

 Chapter
 7
Lists and Recursion

When we program with lists in conventional languages, we treat them as
things to be iterated—it seems natural to loop over them. So why do we
have a chapter on lists and recursion? Because if you look at the
problem in the right way, recursion is a perfect tool for processing
lists.

Heads and Tails

Earlier we said a list may either be empty or consist of a head and a
tail. The head contains a value and the tail is itself a list.
This is a recursive definition.

We’ll represent the empty list like this: [].

Let’s imagine we
could represent the split between the head and the tail using a pipe
character: |.
The single-element list we normally write as [3] can be written as the
value 3 joined to the empty list:
	​ 	[3 | []]

(I’ve highlighted the inner list.)

When we see the pipe character, we say that what’s on the left is the
head of a list and what’s on the right is the tail.

Let’s look at the list [2, 3]. The head is 2, and the tail is
the single-element list containing 3. And we know what that list
looks like—it is our previous example. So we could write [2,3] as
	​ 	[2 | [3 | []]]

At this point, part of your brain is telling you to go read today’s
XKCD—this list stuff can’t be useful. Ignore that small voice, just for a
second. We’re about to do something magical. But before we do, let’s
add one more term, making our list [1, 2, 3]. This is the head 1
followed by the list [2, 3], which is what we derived a moment ago:
	​ 	[1 | [2 | [3 | []]]

This is valid Elixir syntax. Type it into IEx.
	​ 	​iex>​ [1 | [2 | [3 | []]]]
	​ 	[1, 2, 3]

And here’s the magic. When we discussed pattern matching, we said
the pattern could be a list, and the values in that list would be
assigned from the right-hand side.
	​ 	​iex>​ [a, b, c] = [1, 2, 3]
	​ 	[1, 2, 3]
	​ 	​iex>​ a
	​ 	1
	​ 	​iex>​ b
	​ 	2
	​ 	​iex>​ c
	​ 	3

We can also use the pipe character in the pattern. What’s to the left
of it matches the head value of the list, and what’s to the right
matches the tail.
	​ 	​iex>​ [head | tail] = [1, 2, 3]
	​ 	[1, 2, 3]
	​ 	​iex>​ head
	​ 	1
	​ 	​iex>​ tail
	​ 	[2, 3]

How IEx Displays Lists

	

	
	
 In Chapter 11, ​Strings and Binaries​, you’ll see that Elixir has two
 representations for strings. One is the familiar sequence of
 characters in consecutive memory locations. Literals written
 with double quotes use this form.

 The second form, using single quotes, represents a string as a
 list of integer codepoints. So the string ’cat’
 is the three codepoints: 99, 97, and 116.

 This is a headache for IEx. When it sees a list like
 [99,97,116] it doesn’t know if it is supposed to be the
 string ’cat’ or a list of three numbers. So it uses a
 heuristic. If all the values in a list represent printable
 characters, it displays the list as a string; otherwise it
 displays a list of integers.

	​ 	iex≻ [99, 97, 116]
	​ 	'cat'
	​ 	iex≻ [99, 97, 116, 0] # '0' is nonprintable
	​ 	[99, 97, 116, 0]

 In Chapter 11, ​Strings and Binaries​, we’ll cover how to bypass this
		behavior. In the meantime, don’t be surprised if a string pops
		up when you were expecting a list.

Using Head and Tail to Process a List

Now we can split a list into its head and its tail, and we can
construct a list from a value and a list, which become the head and
tail of that new list.

So why talk about lists after we talk about modules and functions? Because
lists and recursive functions go together like fish and chips. Let’s look at
finding the length of a list.
	The length of an empty list is 0.
	The length of a list is 1 plus the length of that list’s tail.

Writing the list-length algorithm in Elixir is easy:
lists/mylist.exs
	​ 	​defmodule​ MyList ​do​
	​ 	 ​def​ len([]), ​do​: 0
	​ 	 ​def​ len([head|tail]), ​do​: 1 + len(tail)
	​ 	​end​

The only tricky part is the definition of the function’s second variant:
	​ 	​def​ len([head | tail]) ...

This is a pattern match for any nonempty list. When it does match, the
variable head will hold the value of the first element of the list,
and tail will hold the rest of the list. (And remember that every
list is terminated by an empty list, so the tail can be [].)

Let’s see this at work with the list [11, 12, 13, 14, 15]. At each step,
we take off the head and add 1 to the length of the tail:
	​ 	len([11,12,13,14,15])
	​ 	= 1 + len([12,13,14,15])
	​ 	= 1 + 1 + len([13,14,15])
	​ 	= 1 + 1 + 1 + len([14,15])
	​ 	= 1 + 1 + 1 + 1 + len([15])
	​ 	= 1 + 1 + 1 + 1 + 1 + len([])
	​ 	= 1 + 1 + 1 + 1 + 1 + 0
	​ 	= 5

Let’s try our code to see if theory works in practice:
	​ 	​iex>​ c ​"​​mylist.exs"​
	​ 	...mylist.exs:3: variable head is unused
	​ 	[MyList]
	​ 	​iex>​ MyList.len([])
	​ 	0
	​ 	​iex>​ MyList.len([11,12,13,14,15])
	​ 	5

It works, but we have a compilation warning—we never used the variable
head in the body of our function. We can fix that, and make our code
more explicit, using the special variable _ (underscore), which
 acts as a placeholder. We can also use an underscore in
front of any variable name to turn off the warning if that variable
isn’t used. I sometimes like to do this to document the unused
parameter.
lists/mylist1.exs
	​ 	​defmodule​ MyList ​do​
	​ 	 ​def​ len([]), ​do​: 0
	​ 	 ​def​ len([_head | tail]), ​do​: 1 + len(tail)
	​ 	​end​

When we compile, the warning is gone. (However, if you compile the
second version of MyList, you may get a warning about “redefining
module MyList.” This is just Elixir being cautious.)
	​ 	​iex>​ c ​"​​mylist1.exs"​
	​ 	[MyList]
	​ 	​iex>​ MyList.len([1,2,3,4,5])
	​ 	5
	​ 	​iex>​ MyList.len([​"​​cat"​, ​"​​dog"​])
	​ 	2

Using Head and Tail to Build a List

Let’s get more ambitious. Let’s write a function that takes a list of
numbers and returns a new list containing the square of each. We don’t
show it, but these definitions are also inside the MyList module.
lists/mylist1.exs
	​ 	​def​ square([]), ​do​: []
	​ 	​def​ square([head | tail]), ​do​: [head*head | square(tail)]

There’s a lot going on here. First, look at the parameter patterns for
the two definitions of square. The first matches an empty list and
the second matches all other lists.

Second, look at the body of the second definition:
	​ 	​def​ square([head | tail]), ​do​: [head*head | square(tail)]

When we match a nonempty list, we return a new list whose head is the
square of the original list’s head and whose tail is a list of squares
of the tail. This is the recursive step.

Let’s try it:
	​ 	​iex>​ c ​"​​mylist1.exs"​
	​ 	[MyList]
	​ 	​iex>​ MyList.square [] ​# this calls the 1st definition​
	​ 	[]
	​ 	​iex>​ MyList.square [4,5,6] ​# and this calls the 2nd​
	​ 	[16, 25, 36]

Let’s do something similar—a function that adds 1 to every element
in the list:
lists/mylist1.exs
	​ 	​def​ add_1([]), ​do​: []
	​ 	​def​ add_1([head | tail]), ​do​: [head+1 | add_1(tail)]

And call it:
	​ 	​iex>​ c ​"​​mylist1.exs"​
	​ 	[MyList]
	​ 	​iex>​ MyList.add_1 [1000]
	​ 	[1001]
	​ 	​iex>​ MyList.add_1 [4,6,8]
	​ 	[5, 7, 9]

Creating a Map Function

With both square and add_1, all the work is done in the second
function definition. And that definition looks about the same for
each—it returns a new list whose head is the result of either squaring
or incrementing the head of its argument and whose tail is the result
of calling itself recursively on the tail of the argument. Let’s
generalize this. We’ll define a function called map that takes a list
and a function and returns a new list containing the result of
applying that function to each element in the original.
lists/mylist1.exs
	​ 	​def​ map([], _func), ​do​: []
	​ 	​def​ map([head | tail], func), ​do​: [func.(head) | map(tail, func)]

The map function is pretty much identical to the square and
add_1 functions. It returns an empty list if passed an empty list;
otherwise it returns a list where the head is the result of calling
the passed-in function and the tail is a recursive call to
itself. Note that in the case of an empty list, we use _func as the
second parameter. The underscore prevents Elixir from warning us about an
unused variable.

To call this function, pass in a list and a function (defined using
fn):
	​ 	​iex>​ c ​"​​mylist1.exs"​
	​ 	[MyList]
	​ 	​iex>​ MyList.map [1,2,3,4], ​fn​ (n) -> n*n ​end​
	​ 	[1, 4, 9, 16]

A function is just a built-in type, defined between fn and the
end. Here we pass a function as the second argument (func) to
map. This is invoked inside map using func.(head), which
squares the value in head, using the result to build the new list.

We can call map with a different function:
	​ 	​iex>​ MyList.map [1,2,3,4], ​fn​ (n) -> n+1 ​end​
	​ 	[2, 3, 4, 5]

And another:
	​ 	​iex>​ MyList.map [1,2,3,4], ​fn​ (n) -> n > 2 ​end​
	​ 	[false, false, true, true]

And we can do the same using the & shortcut notation:
	​ 	​iex>​ MyList.map [1,2,3,4], &(&1 + 1)
	​ 	[2, 3, 4, 5]
	​ 	​iex>​ MyList.map [1,2,3,4], &(&1 > 2)
	​ 	[false, false, true, true]

Reducing a List to a Single Value

The map/2 function we just wrote abstracts the idea of applying a
function to each element of a list independently.

But what if we want to apply that function across the elements? How
could we create an abstraction that would let us sum a list, or find
the product of its elements, or find the largest element?

The sum function reduces a collection to a single value. Other functions need to do something similar—return the greatest/least
value, the product of the elements, a string containing a
concatenation of elements, and so on. How can we write a
general-purpose function that reduces a collection to a value?

We know it has to take a collection. We also know we need to pass in
some initial value (just like our sum/1 function passed a 0 as an
initial value to its helper). Additionally, we need to pass in a function
that takes the current value of the reduction along with the next
element of the collection, and returns the next value of the
reduction. So, it looks like our reduce function will be called with
three arguments:
	​ 	reduce(collection, initial_value, fun)

Now let’s think about the recursive design:
	reduce([], value, _fun) → value
	reduce([head | tail], value, fun) → reduce(tail, fun.(head, value), fun)

reduce applies the function to the list’s head and the
current value, and passes the result as the new current value when
reducing the list’s tail.

Here’s our code for reduce. See how closely it follows the design:
lists/reduce.exs
	​ 	​defmodule​ MyList ​do​
	​ 	 ​def​ reduce([], value, _) ​do​
	​ 	 value
	​ 	 ​end​
	​ 	 ​def​ reduce([head | tail], value, func) ​do​
	​ 	 reduce(tail, func.(head, value), func)
	​ 	 ​end​
	​ 	​end​

And, again, we can use the shorthand notation to pass in the function:

	​ 	​iex>​ c ​"​​reduce.exs"​
	​ 	[MyList]
	​ 	​iex>​ MyList.reduce([1,2,3,4,5], 0, &(&1 + &2))
	​ 	15
	​ 	​iex>​ MyList.reduce([1,2,3,4,5], 1, &(&1 * &2))
	​ 	120

Your Turn
	Exercise: ListsAndRecursion-1

Write a mapsum function that takes a list and a function. It
applies the function to each element of the list and then sums the
result, so
	​ 	​iex>​ MyList.mapsum [1, 2, 3], &(&1 * &1)
	​ 	14

	Exercise: ListsAndRecursion-2

Write a max(list) that returns the element with the maximum value in
the list. (This is slightly trickier than it sounds.)

	Exercise: ListsAndRecursion-3

An Elixir single-quoted string is actually a list of individual
character codes. Write a caesar(list, n) function that adds n to
each list element, wrapping if the addition results in a
character greater than z.
	​ 	​iex>​ MyList.caesar(​'ryvkve'​, 13)
	​ 	?????? :)

More Complex List Patterns

Not every list problem can be easily solved by processing one element at a
time. Fortunately, the join operator, |, supports multiple values to
its left. Thus, you could write
	​ 	​iex>​ [1, 2, 3 | [4, 5, 6]]
	​ 	[1, 2, 3, 4, 5, 6]

The same thing works in patterns, so you can match multiple individual
elements as the head. For example, this program swaps pairs
of values in a list:
lists/swap.exs
	​ 	​defmodule​ Swapper ​do​
	​ 	 ​def​ swap([]), ​do​: []
	​ 	 ​def​ swap([a, b | tail]), ​do​: [b, a | swap(tail)]
	​ 	 ​def​ swap([_]), ​do​: ​raise​ ​"​​Can't swap a list with an odd number of elements"​
	​ 	​end​

We can play with it in IEx:
	​ 	​iex>​ c ​"​​swap.exs"​
	​ 	[Swapper]
	​ 	​iex>​ Swapper.swap [1,2,3,4,5,6]
	​ 	[2, 1, 4, 3, 6, 5]
	​ 	​iex>​ Swapper.swap [1,2,3,4,5,6,7]
	​ 	​**​ (RuntimeError) Can't swap a list with an odd number of elements

The third definition of swap matches a list with a single
element. This will happen if we get to the end of the recursion and
have only one element left. Given that we take two values off the list on each
cycle, the initial list must have had an odd number of elements.
Lists of Lists

Let’s imagine we had recorded temperatures and rainfall at a number of
weather stations. Each reading looks like this:
	​ 	[timestamp, location_id, temperature, rainfall]

Our code is passed a list containing a number of these readings, and
we want to report on the conditions for one particular location,
number 27.
lists/weather.exs
	​ 	​defmodule​ WeatherHistory ​do​
	​ 	
	​ 	 ​def​ for_location_27([]), ​do​: []
	​ 	 ​def​ for_location_27([[time, 27, temp, rain] | tail]) ​do​
	​ 	 [[time, 27, temp, rain] | for_location_27(tail)]
	​ 	 ​end​
	​ 	 ​def​ for_location_27([_ | tail]), ​do​: for_location_27(tail)
	​ 	
	​ 	​end​

This is a standard recurse until the list is empty stanza. But look
at our function definition’s second clause. Where we’d
normally match into a variable called head, here the pattern is
	​ 	for_location_27([[time, 27, temp, rain] | tail])

For this to match, the head of the list must itself be a four-element
list, and the second element of this sublist must be 27. This function
will execute only for entries from the desired location. But when we
do this kind of filtering, we also have to remember to deal with the
case when our function doesn’t match. That’s what the third line
does. We could have written
	​ 	for_location_27([[time, _, temp, rain] | tail])

but in reality we don’t care what is in the head at this point.

In the same module we define some simple test data:
lists/weather.exs
	​ 	​def​ test_data ​do​
	​ 	 [
	​ 	 [1366225622, 26, 15, 0.125],
	​ 	 [1366225622, 27, 15, 0.45],
	​ 	 [1366225622, 28, 21, 0.25],
	​ 	 [1366229222, 26, 19, 0.081],
	​ 	 [1366229222, 27, 17, 0.468],
	​ 	 [1366229222, 28, 15, 0.60],
	​ 	 [1366232822, 26, 22, 0.095],
	​ 	 [1366232822, 27, 21, 0.05],
	​ 	 [1366232822, 28, 24, 0.03],
	​ 	 [1366236422, 26, 17, 0.025]
	​]
	​ 	​end​

We can use that to play with our function in IEx. To make this easier,
I’m using the import function. This adds
the functions in WeatherHistory to our local name
scope. After calling import we don’t have to put the
module name in front of every function call.
	​ 	​iex>​ c ​"​​weather.exs"​
	​ 	[WeatherHistory]
	​ 	​iex>​ ​import​ WeatherHistory
	​ 	WeatherHistory
	​ 	​iex>​ for_location_27(test_data)
	​ 	[[1366225622, 27, 15, 0.45], [1366229222, 27, 17, 0.468],
	​ 	 [1366232822, 27, 21, 0.05]]

Our function is specific to a particular location, which is pretty
limiting. We’d like to be able to pass in the location as a
parameter. We can use pattern matching for this.
lists/weather2.exs
	​ 	​defmodule​ WeatherHistory ​do​
	​ 	
	​ 	 ​def​ for_location([], _target_loc), ​do​: []
	​ 	
	»	 ​def​ for_location([[time, target_loc, temp, rain] | tail], target_loc) ​do​
	​ 	 [[time, target_loc, temp, rain] | for_location(tail, target_loc)]
	​ 	 ​end​
	​ 	
	​ 	 ​def​ for_location([_ | tail], target_loc), ​do​: for_location(tail, target_loc)
	​ 	
	​ 	​end​

Now the second function fires only when the location extracted from
the list head equals the target location passed as a parameter.

But we can improve on this. Our filter doesn’t care about the other
three fields in the head—it just needs the location. But we do need
the value of the head itself to create the output list. Fortunately,
Elixir pattern matching is recursive and we can match patterns inside
patterns.
lists/weather3.exs
	​ 	​defmodule​ WeatherHistory ​do​
	​ 	
	​ 	 ​def​ for_location([], _target_loc), ​do​: []
	​ 	
	»	 ​def​ for_location([head = [_, target_loc, _, _] | tail], target_loc) ​do​
	​ 	 [head | for_location(tail, target_loc)]
	​ 	 ​end​
	​ 	
	​ 	 ​def​ for_location([_ | tail], target_loc), ​do​: for_location(tail, target_loc)
	​ 	
	​ 	​end​

The key change here is this line:
	​ 	​def​ for_location([head = [_, target_loc, _, _] | tail], target_loc)

Compare that with the previous version:
	​ 	​def​ for_location([[time, target_loc, temp, rain] | tail], target_loc)

In the new version, we use placeholders for the fields we don’t care
about. But we also match the entire four-element array into the parameter head.
It’s as if we said, “Match the head of the list where the second element is
matched to target_loc and then match that whole head with the variable
head.” We’ve extracted an individual component of the sublist as
well as the entire sublist.

In the original body of for_location, we generated our result list
using the individual fields:
	​ 	​def​ for_location([[time, target_loc, temp, rain] | tail], target_loc)
	​ 	 [[time, target_loc, temp, rain] | for_location(tail, target_loc)]
	​ 	​end​

In the new version, we can just use the head, making it a lot clearer:
	​ 	​def​ for_location([head = [_, target_loc, _, _] | tail], target_loc) ​do​
	​ 	 [head | for_location(tail, target_loc)]
	​ 	​end​

Your Turn
	Exercise: ListsAndRecursion-4

Write a function MyList.span(from, to) that returns a list of the
numbers from from up to to.

The List Module in Action

The List module provides a set of functions that operate on lists.
	​ 	#
	​ 	# Concatenate lists
	​ 	#
	​ 	​iex>​ [1,2,3] ++ [4,5,6]
	​ 	[1, 2, 3, 4, 5, 6]
	​ 	#
	​ 	# Flatten
	​ 	#
	​ 	​iex>​ List.flatten([[[1], 2], [[[3]]]])
	​ 	[1, 2, 3]
	​ 	#
	​ 	# Folding (like reduce, but can choose direction)
	​ 	#
	​ 	​iex>​ List.foldl([1,2,3], ​"​​"​, ​fn​ value, acc -> ​"​​#{​value​}​​(​​#{​acc​}​​)"​ ​end​)
	​ 	"3(2(1()))"
	​ 	​iex>​ List.foldr([1,2,3], ​"​​"​, ​fn​ value, acc -> ​"​​#{​value​}​​(​​#{​acc​}​​)"​ ​end​)
	​ 	"1(2(3()))"
	​ 	#
	​ 	# Updating in the middle (not a cheap operation)
	​ 	#
	​ 	​iex>​ list = [1, 2, 3]
	​ 	[1, 2, 3]
	​ 	​iex>​ List.replace_at(list, 2, ​"​​buckle my shoe"​)
	​ 	[1, 2, "buckle my shoe"]
	​ 	#
	​ 	# Accessing tuples within lists
	​ 	#
	​ 	​iex>​ kw = [{​:name​, ​"​​Dave"​}, {​:likes​, ​"​​Programming"​}, {​:where​, ​"​​Dallas"​, ​"​​TX"​}]
	​ 	[{:name, "Dave"}, {:likes, "Programming"}, {:where, "Dallas", "TX"}]
	​ 	​iex>​ List.keyfind(kw, ​"​​Dallas"​, 1)
	​ 	{:where, "Dallas", "TX"}
	​ 	​iex>​ List.keyfind(kw, ​"​​TX"​, 2)
	​ 	{:where, "Dallas", "TX"}
	​ 	​iex>​ List.keyfind(kw, ​"​​TX"​, 1)
	​ 	nil
	​ 	​iex>​ List.keyfind(kw, ​"​​TX"​, 1, ​"​​No city called TX"​)
	​ 	"No city called TX"
	​ 	​iex>​ kw = List.keydelete(kw, ​"​​TX"​, 2)
	​ 	[name: "Dave", likes: "Programming"]
	​ 	​iex>​ kw = List.keyreplace(kw, ​:name​, 0, {​:first_name​, ​"​​Dave"​})
	​ 	[first_name: "Dave", likes: "Programming"]

Get Friendly with Lists

Lists are the natural data structure to use when you have a stream of values
to handle. You’ll use them to parse data, handle collections of
values, and record the results of a series of function calls. It’s
worth spending a while getting comfortable with them.

Next we’ll look at the various dictionary types, including maps. These
 let us organize data into collections of key/value pairs.

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	The two and a half dictionary data types
	Pattern matching and updating maps
	Structs
	Nested data structures

 Chapter
 8
Maps, Keyword Lists, Sets, and Structs

A dictionary is a data type that associates keys with values.

We’ve already looked briefly at the dictionary types: maps and keyword
lists. In this short chapter we’ll cover how to use them with pattern
matching and how to update them. Then we’ll dive into structs, a
special kind of map with a fixed structure.
Finally we’ll explore nested data structures and see how to alter
fields in a map inside another map inside another map.…

First, though, let’s answer a common question—how do we choose an
appropriate dictionary type for a particular need?

How to Choose Between Maps, Structs, and Keyword Lists

Ask yourself these questions (in this order):
	
Do I want to pattern-match against the contents (for example,
matching a dictionary that has a key of :name somewhere in it)?

If so, use a map.

	
Will I want more than one entry with the same key?

If so, you’ll have to use the Keyword module.

	
Do I need to guarantee the elements are ordered?

If so, again, use the Keyword module.

	
Do I have a fixed set of fields (that is, is the structure of the
data always the same)?

If so, use a struct.

	
Otherwise, if you’ve reached this point,

Use a map.

Keyword Lists

Keyword lists are typically used in the context of options passed to
functions.
maps/keywords.exs
	​ 	​defmodule​ Canvas ​do​
	​ 	
	​ 	 @defaults [​fg:​ ​"​​black"​, ​bg:​ ​"​​white"​, ​font:​ ​"​​Merriweather"​]
	​ 	
	​ 	 ​def​ draw_text(text, options \\ []) ​do​
	​ 	 options = Keyword.merge(@defaults, options)
	​ 	 IO.puts ​"​​Drawing text ​​#{​inspect(text)​}​​"​
	​ 	 IO.puts ​"​​Foreground: ​​#{​options[​:fg​]​}​​"​
	​ 	 IO.puts ​"​​Background: ​​#{​Keyword.get(options, ​:bg​)​}​​"​
	​ 	 IO.puts ​"​​Font: ​​#{​Keyword.get(options, ​:font​)​}​​"​
	​ 	 IO.puts ​"​​Pattern: ​​#{​Keyword.get(options, ​:pattern​, ​"​​solid"​)​}​​"​
	​ 	 IO.puts ​"​​Style: ​​#{​inspect Keyword.get_values(options, ​:style​)​}​​"​
	​ 	 ​end​
	​ 	
	​ 	​end​
	​ 	
	​ 	Canvas.draw_text(​"​​hello"​, ​fg:​ ​"​​red"​, ​style:​ ​"​​italic"​, ​style:​ ​"​​bold"​)
	​ 	
	​ 	​# =>​
	​ 	​# Drawing text "hello"​
	​ 	​# Foreground: red​
	​ 	​# Background: white​
	​ 	​# Font: Merriweather​
	​ 	​# Pattern: solid​
	​ 	​# Style: ["italic", "bold"]​

For simple access, you can use the access operator, kwlist[key].
In addition, all the functions of the
Keyword and Enum
modules are available.[14][15]

Maps

Maps are the go-to key/value data structure in Elixir. They have good
performance at all sizes.

Let’s play with the Map API:[16]
	​ 	​iex>​ map = %{ ​name:​ ​"​​Dave"​, ​likes:​ ​"​​Programming"​, ​where:​ ​"​​Dallas"​ }
	​ 	%{likes: "Programming", name: "Dave", where: "Dallas"}
	​ 	​iex>​ Map.keys map
	​ 	[:likes, :name, :where]
	​ 	​iex>​ Map.values map
	​ 	["Programming", "Dave", "Dallas"]
	​ 	​iex>​ map[​:name​]
	​ 	"Dave"
	​ 	​iex>​ map.name
	​ 	"Dave"
	​ 	​iex>​ map1 = Map.drop map, [​:where​, ​:likes​]
	​ 	%{name: "Dave"}
	​ 	​iex>​ map2 = Map.put map, ​:also_likes​, ​"​​Ruby"​
	​ 	%{also_likes: "Ruby", likes: "Programming", name: "Dave", where: "Dallas"}
	​ 	​iex>​ Map.keys map2
	​ 	[:also_likes, :likes, :name, :where]
	​ 	​iex>​ Map.has_key? map1, ​:where​
	​ 	false
	​ 	​iex>​ { value, updated_map } = Map.pop map2, ​:also_likes​
	​ 	{"Ruby", %{likes: "Programming", name: "Dave", where: "Dallas"}}
	​ 	​iex>​ Map.equal? map, updated_map
	​ 	true

Pattern Matching and Updating Maps

The question we most often ask of our maps is, “Do you have the
following keys (and maybe values)?” For example, given this map:
	​ 	person = %{ ​name:​ ​"​​Dave"​, ​height:​ 1.88 }

	
Is there an entry with the key :name?
	​ 	​iex>​ %{ ​name:​ a_name } = person
	​ 	%{height: 1.88, name: "Dave"}
	​ 	​iex>​ a_name
	​ 	"Dave"

	
Are there entries for the keys :name and :height?
	​ 	​iex>​ %{ ​name:​ _, ​height:​ _ } = person
	​ 	%{height: 1.88, name: "Dave"}

	
Does the entry with key :name have the value "Dave"?
	​ 	​iex>​ %{ ​name:​ ​"​​Dave"​ } = person
	​ 	%{height: 1.88, name: "Dave"}

Our map does not have the key :weight, so the following pattern match fails:
	​ 	​iex>​ %{ ​name:​ _, ​weight:​ _ } = person
	​ 	​**​ (MatchError) no match of right hand side value: %{height: 1.88, name: "Dave"}

It’s worth noting how the first pattern match destructured the map,
extracting the value associated with the key :name. We can use this
in many ways. Here’s one example. The for construct lets us iterate
over a collection, filtering as we go. We cover it when we talk about
enumerating. The following
example uses for to iterate over a list of people. Destructuring is
used to extract the height value, which is used to filter the
results.
maps/query.exs
	​ 	people = [
	​ 	 %{ ​name:​ ​"​​Grumpy"​, ​height:​ 1.24 },
	​ 	 %{ ​name:​ ​"​​Dave"​, ​height:​ 1.88 },
	​ 	 %{ ​name:​ ​"​​Dopey"​, ​height:​ 1.32 },
	​ 	 %{ ​name:​ ​"​​Shaquille"​, ​height:​ 2.16 },
	​ 	 %{ ​name:​ ​"​​Sneezy"​, ​height:​ 1.28 }
	​]
	​ 	
	​ 	IO.inspect(for person = %{ ​height:​ height } <- people, height > 1.5, ​do​: person)

This produces
	​ 	[%{​height:​ 1.88, ​name:​ ​"​​Dave"​}, %{​height:​ 2.16, ​name:​ ​"​​Shaquille"​}]

In this code, we feed a list of maps to our comprehension. The
generator clause binds each map (as a whole) to person and
binds the height from that map to height. The filter selects only
those maps where the height exceeds 1.5, and the do block returns
the people that match. The comprehension as a whole returns a list
of these people, which IO.inspect prints.

Clearly pattern matching is just pattern matching, so this maps capability works equally well in cond expressions, function head matching, and any
other circumstances in which patterns are used.
maps/book_room.exs
	​ 	​defmodule​ HotelRoom ​do​
	​ 	
	​ 	 ​def​ book(%{​name:​ name, ​height:​ height})
	​ 	 ​when​ height > 1.9 ​do​
	​ 	 IO.puts ​"​​Need extra-long bed for ​​#{​name​}​​"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ book(%{​name:​ name, ​height:​ height})
	​ 	 ​when​ height < 1.3 ​do​
	​ 	 IO.puts ​"​​Need low shower controls for ​​#{​name​}​​"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ book(person) ​do​
	​ 	 IO.puts ​"​​Need regular bed for ​​#{​person.name​}​​"​
	​ 	 ​end​
	​ 	
	​ 	​end​
	​ 	
	​ 	people |> Enum.each(&HotelRoom.book/1)
	​ 	
	​ 	​#=> Need low shower controls for Grumpy​
	​ 	​# Need regular bed for Dave​
	​ 	​# Need regular bed for Dopey​
	​ 	​# Need extra-long bed for Shaquille​
	​ 	​# Need low shower controls for Sneezy​

Pattern Matching Can’t Bind Keys

You can’t bind a value to a key during pattern
matching. You can write this:
	​ 	iex> %{ 2 => state } = %{ 1 => ​:ok​, 2 => ​:error​ }
	​ 	%{1 => ​:ok​, 2 => ​:error​}
	​ 	iex> state
	​ 	​:error​

but not this:
	​ 	​iex>​ %{ item => :ok } = %{ 1 => :ok, 2 => :error }
	​ 	** (CompileError) iex:5: illegal use of variable item in map key…

Pattern Matching Can Match Variable Keys

When we looked at basic pattern matching, we saw that the pin operator uses the value
already in a variable on the left-hand side of a match. We can do the
same with the keys of a map:
	​ 	​iex>​ data = %{ ​name:​ ​"​​Dave"​, ​state:​ ​"​​TX"​, ​likes:​ ​"​​Elixir"​ }
	​ 	%{likes: "Elixir", name: "Dave", state: "TX"}
	​ 	​iex>​ for key <- [​:name​, ​:likes​] ​do​
	​ 	​...>​ %{ ^key => value } = data
	​ 	​...>​ value
	​ 	​...>​ ​end​
	​ 	["Dave", "Elixir"]

Updating a Map

Maps let us add new key/value entries and update existing entries without
traversing the whole structure. But as with all values in Elixir, a map is
immutable, and so the result of the update is a new map.

The simplest way to update a map is with this syntax:

	​ 	new_map = %{ old_map | key => value, ​…​ }

This creates a new map that is a copy of the old, but the values
associated with the keys on the right of the pipe character are
updated:
	​ 	​iex>​ m = %{ ​a:​ 1, ​b:​ 2, ​c:​ 3 }
	​ 	%{a: 1, b: 2, c: 3}
	​ 	​iex>​ m1 = %{ m | ​b:​ ​"​​two"​, ​c:​ ​"​​three"​ }
	​ 	%{a: 1, b: "two", c: "three"}
	​ 	​iex>​ m2 = %{ m1 | ​a:​ ​"​​one"​ }
	​ 	%{a: "one", b: "two", c: "three"}

However, this syntax will not add a new key to a map. To do this, you
have to use the Map.put_new/3 function.

Structs

When Elixir sees %{ … } it knows it is looking at a map. But it
doesn’t know much more than that. In particular, it doesn’t know what
you intend to do with the map, whether only certain keys are allowed,
or whether some keys should have default values.

That’s fine for anonymous maps. But what if we want to create a
typed map—a map that has a fixed set of fields and default values for
those fields, and that you can pattern-match by type as well as
content.

Enter the struct.

A struct is just a module that wraps a limited form of map.
It’s limited because the keys must be atoms and because these maps
don’t have Dict capabilities.
The name of the module becomes the name of the map type.

Inside the module, you use the defstruct macro to define the
struct’s members.
maps/defstruct.exs
	​ 	​defmodule​ Subscriber ​do​
	​ 	 defstruct ​name:​ ​"​​"​, ​paid:​ false, ​over_18:​ true
	​ 	​end​

Let’s play with this in IEx:
	​ 	$ iex defstruct.exs
	​ 	​iex>​ s1 = %Subscriber{}
	​ 	%Subscriber{name: "", over_18: true, paid: false}
	​ 	​iex>​ s2 = %Subscriber{ ​name:​ ​"​​Dave"​ }
	​ 	%Subscriber{name: "Dave", over_18: true, paid: false}
	​ 	​iex>​ s3 = %Subscriber{ ​name:​ ​"​​Mary"​, ​paid:​ true }
	​ 	%Subscriber{name: "Mary", over_18: true, paid: true}

The syntax for creating a struct is the same as the syntax for
creating a map—you simply add the module name between the % and the
{.

You access the fields in a struct using dot notation or
pattern matching:
	​ 	​iex>​ s3.name
	​ 	"Mary"
	​ 	​iex>​ %Subscriber{​name:​ a_name} = s3
	​ 	%Subscriber{name: "Mary", over_18: true, paid: true}
	​ 	​iex>​ a_name
	​ 	"Mary"

And updates follow suit:
	​ 	​iex>​ s4 = %Subscriber{ s3 | ​name:​ ​"​​Marie"​}
	​ 	%Subscriber{name: "Marie", over_18: true, paid: true}

Why are structs wrapped in a module? The idea is that you are likely
to want to add struct-specific behavior.
maps/defstruct1.exs
	​ 	​defmodule​ Attendee ​do​
	​ 	 defstruct ​name:​ ​"​​"​, ​paid:​ false, ​over_18:​ true
	​ 	
	​ 	 ​def​ may_attend_after_party(attendee = %Attendee{}) ​do​
	​ 	 attendee.paid && attendee.over_18
	​ 	 ​end​
	​ 	
	​ 	 ​def​ print_vip_badge(%Attendee{​name:​ name}) ​when​ name != ​"​​"​ ​do​
	​ 	 IO.puts ​"​​Very cheap badge for ​​#{​name​}​​"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ print_vip_badge(%Attendee{}) ​do​
	​ 	 ​raise​ ​"​​missing name for badge"​
	​ 	 ​end​
	​ 	​end​

	​ 	$ iex defstruct1.exs
	​ 	​iex>​ a1 = %Attendee{​name:​ ​"​​Dave"​, ​over_18:​ true}
	​ 	%Attendee{name: "Dave", over_18: true, paid: false}
	​ 	​iex>​ Attendee.may_attend_after_party(a1)
	​ 	false
	​ 	​iex>​ a2 = %Attendee{a1 | ​paid:​ true}
	​ 	%Attendee{name: "Dave", over_18: true, paid: true}
	​ 	​iex>​ Attendee.may_attend_after_party(a2)
	​ 	true
	​ 	​iex>​ Attendee.print_vip_badge(a2)
	​ 	Very cheap badge for Dave
	​ 	:ok
	​ 	​iex>​ a3 = %Attendee{}
	​ 	%Attendee{name: "", over_18: true, paid: false}
	​ 	​iex>​ Attendee.print_vip_badge(a3)
	​ 	​**​ (RuntimeError) missing name for badge…

Notice how we could call the functions in the Attendee module to
manipulate the associated struct.

Structs also play a large role when implementing polymorphism, which
we’ll see when we look at protocols.

Nested Dictionary Structures

The various dictionary types let us associate keys with values. But those
values can themselves be dictionaries. For example, we may have a
bug-reporting system. We could
represent this using the following:
maps/nested.exs
	​ 	​defmodule​ Customer ​do​
	​ 	 defstruct ​name:​ ​"​​"​, ​company:​ ​"​​"​
	​ 	​end​
	​ 	
	​ 	​defmodule​ BugReport ​do​
	​ 	 defstruct ​owner:​ %Customer{}, ​details:​ ​"​​"​, ​severity:​ 1
	​ 	​end​

Let’s create a simple report:
	​ 	​iex>​ report = %BugReport{​owner:​ %Customer{​name:​ ​"​​Dave"​, ​company:​ ​"​​Pragmatic"​},
	​ 	​...>​ ​details:​ ​"​​broken"​}
	​ 	%BugReport{details: "broken", severity: 1,
	​ 	 owner: %Customer{company: "Pragmatic", name: "Dave"}}

The owner attribute of the report is itself a Customer struct.

We can access nested fields using regular dot notation:
	​ 	​iex>​ report.owner.company
	​ 	"Pragmatic"

But now our customer complains the company name is incorrect—it should
be PragProg. Let’s fix it:
	​ 	​iex>​ report = %BugReport{ report | ​owner:​
	​ 	​...>​ %Customer{ report.owner | ​company:​ ​"​​PragProg"​ }}
	​ 	%BugReport{details: "broken",
	​ 	 owner: %Customer{company: "PragProg", name: "Dave"},
	​ 	 severity: 1}

Ugly stuff! We had to update the overall bug report’s owner attribute with an updated customer structure. This is
verbose, hard to read, and error prone.

Fortunately, Elixir has a set of nested dictionary-access
functions. One of these, put_in, lets us set a value in a nested
structure:
	​ 	​iex>​ put_in(report.owner.company, ​"​​PragProg"​)
	​ 	%BugReport{details: "broken",
	​ 	 owner: %Customer{company: "PragProg", name: "Dave"},
	​ 	 severity: 1}

This isn’t magic—it’s simply a macro that generates the long-winded
code we’d have to have written otherwise.

The update_in function lets us apply a function to a value in a
structure.
	​ 	​iex>​ update_in(report.owner.name, &(​"​​Mr. "​ <> &1))
	​ 	%BugReport{details: "broken",
	​ 	 owner: %Customer{company: "PragProg", name: "Mr. Dave"},
	​ 	 severity: 1}

The other two nested access functions are get_in and
get_and_update_in. The documentation in IEx contains
everything you need for these. However,
both of these functions support a cool trick: nested access.
Nested Accessors and Nonstructs

If you are using the nested accessor functions with maps
or keyword lists, you can supply the keys as atoms:
	​ 	​iex>​ report = %{ ​owner:​ %{ ​name:​ ​"​​Dave"​, ​company:​ ​"​​Pragmatic"​ }, ​severity:​ 1}
	​ 	%{owner: %{company: "Pragmatic", name: "Dave"}, severity: 1}
	​ 	​iex>​ put_in(report[​:owner​][​:company​], ​"​​PragProg"​)
	​ 	%{owner: %{company: "PragProg", name: "Dave"}, severity: 1}
	​ 	​iex>​ update_in(report[​:owner​][​:name​], &(​"​​Mr. "​ <> &1))
	​ 	%{owner: %{company: "Pragmatic", name: "Mr. Dave"}, severity: 1}

Dynamic (Runtime) Nested Accessors

The nested accessors we’ve seen so far are macros—they operate at
compile time. As a result, they have some limitations:
	The number of keys you pass a particular call is static.
	You can’t pass the set of keys as parameters between functions.

These are a natural consequence of the way the macros bake their
parameters into code at compile time.

To overcome this, get_in, put_in, update_in, and
get_and_update_in can all take a list of keys as a separate
parameter. Adding this parameter changes them from macros to function
calls, so they become dynamic.
	
	Macro
	Function

	get_in
	no
	(dict, keys)

	put_in
	(path, value)
	(dict, keys, value)

	update_in
	(path, fn)
	(dict, keys, fn)

	get_and_update_in
	(path, fn)
	(dict, keys, fn)

Here’s a simple example:
maps/dynamic_nested.exs
	​ 	nested = %{
	​ 	 ​buttercup:​ %{
	​ 	 ​actor:​ %{
	​ 	 ​first:​ ​"​​Robin"​,
	​ 	 ​last:​ ​"​​Wright"​
	​ 	 },
	​ 	 ​role:​ ​"​​princess"​
	​ 	 },
	​ 	 ​westley:​ %{
	​ 	 ​actor:​ %{
	​ 	 ​first:​ ​"​​Cary"​,
	​ 	 ​last:​ ​"​​Elwes"​ ​# typo!​
	​ 	 },
	​ 	 ​role:​ ​"​​farm boy"​
	​ 	 }
	​ 	}
	​ 	
	​ 	IO.inspect get_in(nested, [​:buttercup​])
	​ 	​# => %{actor: %{first: "Robin", last: "Wright"}, role: "princess"}​
	​ 	
	​ 	IO.inspect get_in(nested, [​:buttercup​, ​:actor​])
	​ 	​# => %{first: "Robin", last: "Wright"}​
	​ 	
	​ 	IO.inspect get_in(nested, [​:buttercup​, ​:actor​, ​:first​])
	​ 	​# => "Robin"​
	​ 	
	​ 	IO.inspect put_in(nested, [​:westley​, ​:actor​, ​:last​], ​"​​Elwes"​)
	​ 	​# => %{buttercup: %{actor: %{first: "Robin", last: "Wright"}, role: "princess"},​
	​ 	​# => westley: %{actor: %{first: "Cary", last: "Elwes"}, role: "farm boy"}}​

There’s a cool trick that the dynamic versions of both get_in and
get_and_update_in support—if you pass a function as a key, that
function is invoked to return the corresponding values.
maps/get_in_func.exs
	​ 	authors = [
	​ 	 %{ ​name:​ ​"​​José"​, ​language:​ ​"​​Elixir"​ },
	​ 	 %{ ​name:​ ​"​​Matz"​, ​language:​ ​"​​Ruby"​ },
	​ 	 %{ ​name:​ ​"​​Larry"​, ​language:​ ​"​​Perl"​ }
	​]
	​ 	
	​ 	languages_with_an_r = ​fn​ (​:get​, collection, next_fn) ->
	​ 	 for row <- collection ​do​
	​ 	 ​if​ String.contains?(row.language, ​"​​r"​) ​do​
	​ 	 next_fn.(row)
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	IO.inspect get_in(authors, [languages_with_an_r, ​:name​])
	​ 	​#=> ["José", nil, "Larry"]​

The Access Module

The Access module provides a number of predefined functions to use
as parameters to get and get_and_update_in. These functions act as simple
filters while traversing the structures.

The all and at functions only work on lists. all returns all
elements in the list, while at returns the nth element (counting from zero).
maps/access1.exs
	​ 	cast = [
	​ 	 %{
	​ 	 ​character:​ ​"​​Buttercup"​,
	​ 	 ​actor:​ %{
	​ 	 ​first:​ ​"​​Robin"​,
	​ 	 ​last:​ ​"​​Wright"​
	​ 	 },
	​ 	 ​role:​ ​"​​princess"​
	​ 	 },
	​ 	 %{
	​ 	 ​character:​ ​"​​Westley"​,
	​ 	 ​actor:​ %{
	​ 	 ​first:​ ​"​​Cary"​,
	​ 	 ​last:​ ​"​​Elwes"​
	​ 	 },
	​ 	 ​role:​ ​"​​farm boy"​
	​ 	 }
	​]
	​ 	
	​ 	IO.inspect get_in(cast, [Access.all(), ​:character​])
	​ 	​#=> ["Buttercup", "Westley"]​
	​ 	
	​ 	IO.inspect get_in(cast, [Access.at(1), ​:role​])
	​ 	​#=> "farm boy"​
	​ 	
	​ 	IO.inspect get_and_update_in(cast, [Access.all(), ​:actor​, ​:last​],
	​ 	 ​fn​ (val) -> {val, String.upcase(val)} ​end​)
	​ 	​#=> {["Wright", "Elwes"],​
	​ 	​# [%{actor: %{first: "Robin", last: "WRIGHT"}, character: "Buttercup",​
	​ 	​# role: "princess"},​
	​ 	​# %{actor: %{first: "Cary", last: "ELWES"}, character: "Westley",​
	​ 	​# role: "farm boy"}]}​

The elem function works on tuples:
maps/access2.exs
	​ 	cast = [
	​ 	 %{
	​ 	 ​character:​ ​"​​Buttercup"​,
	​ 	 ​actor:​ {​"​​Robin"​, ​"​​Wright"​},
	​ 	 ​role:​ ​"​​princess"​
	​ 	 },
	​ 	 %{
	​ 	 ​character:​ ​"​​Westley"​,
	​ 	 ​actor:​ {​"​​Carey"​, ​"​​Elwes"​},
	​ 	 ​role:​ ​"​​farm boy"​
	​ 	 }
	​]
	​ 	
	​ 	IO.inspect get_in(cast, [Access.all(), ​:actor​, Access.elem(1)])
	​ 	​#=> ["Wright", "Elwes"]​
	​ 	
	​ 	IO.inspect get_and_update_in(cast, [Access.all(), ​:actor​, Access.elem(1)],
	​ 	 ​fn​ (val) -> {val, String.reverse(val)} ​end​)
	​ 	​#=> {["Wright", "Elwes"],​
	​ 	​# [%{actor: {"Robin", "thgirW"}, character: "Buttercup", role: "princess"},​
	​ 	​# %{actor: {"Carey", "sewlE"}, character: "Westley", role: "farm boy"}]}​

The key and key! functions work on dictionary types (maps and structs):
maps/access3.exs
	​ 	cast = %{
	​ 	 ​buttercup:​ %{
	​ 	 ​actor:​ {​"​​Robin"​, ​"​​Wright"​},
	​ 	 ​role:​ ​"​​princess"​
	​ 	 },
	​ 	 ​westley:​ %{
	​ 	 ​actor:​ {​"​​Carey"​, ​"​​Elwes"​},
	​ 	 ​role:​ ​"​​farm boy"​
	​ 	 }
	​ 	}
	​ 	
	​ 	IO.inspect get_in(cast, [Access.key(​:westley​), ​:actor​, Access.elem(1)])
	​ 	​#=> "Elwes"​
	​ 	
	​ 	IO.inspect get_and_update_in(cast, [Access.key(​:buttercup​), ​:role​],
	​ 	 ​fn​ (val) -> {val, ​"​​Queen"​} ​end​)
	​ 	​#=> {"princess",​
	​ 	​# %{buttercup: %{actor: {"Robin", "Wright"}, role: "Queen"},​
	​ 	​# westley: %{actor: {"Carey", "Elwes"}, role: "farm boy"}}}​

Finally, Access.pop lets
you remove the entry with a given key from a map or keyword list.
It returns a tuple containing the value associated with the key and
the updated container. nil is returned for the value if the key
isn’t in the container.

The name has nothing to do with the pop stack operation.

	​ 	​iex>​ Access.pop(%{​name:​ ​"​​Elixir"​, ​creator:​ ​"​​Valim"​}, ​:name​)
	​ 	{"Elixir", %{creator: "Valim"}}
	​ 	​iex>​ Access.pop([​name:​ ​"​​Elixir"​, ​creator:​ ​"​​Valim"​], ​:name​)
	​ 	{"Elixir", [creator: "Valim"]}
	​ 	​iex>​ Access.pop(%{​name:​ ​"​​Elixir"​, ​creator:​ ​"​​Valim"​}, ​:year​)
	​ 	{nil, %{creator: "Valim", name: "Elixir"}}

Sets

Sets are implemented using the module MapSet.
	​ 	​iex>​ set1 = 1..5 |> Enum.into(MapSet.new)
	​ 	#MapSet<[1, 2, 3, 4, 5]>
	​ 	​iex>​ set2 = 3..8 |> Enum.into(MapSet.new)
	​ 	#MapSet<[3, 4, 5, 6, 7, 8]>
	​ 	​iex>​ MapSet.member? set1, 3
	​ 	true
	​ 	​iex>​ MapSet.union set1, set2
	​ 	#MapSet<[1, 2, 3, 4, 5, 6, 7, 8]>
	​ 	​iex>​ MapSet.difference set1, set2
	​ 	#MapSet<[1, 2]>
	​ 	​iex>​ MapSet.difference set2, set1
	​ 	#MapSet<[6, 7, 8]>
	​ 	​iex>​ MapSet.intersection set2, set1
	​ 	#MapSet<[3, 4, 5]>

With Great Power Comes Great Temptation

The dictionary types are clearly a powerful tool—you’ll use them all
the time. But you might also be tempted to abuse them. Structs in
particular might lead you into the darkness because you can associate
functions with them in their module definitions. At some point, the
old object-orientation neurons still active in the nether regions of
your brain might burst into life and you might think, “Hey, this is a
bit like a class definition.” And you’d be right. You can write
something akin to object-oriented code using structs (or maps) and modules.

This is a bad idea—not because objects are intrinsically bad, but
because you’ll be mixing paradigms and diluting the benefits a
functional approach gives you.

Stay pure, young coder. Stay pure.

As a way of refocusing you away from the dark side, the next
chapter is a mini diversion into the benefits of separating functions
and the data they work on. And we disguise it in a discussion of types.

Footnotes

	[14]
	
http://elixir-lang.org/docs/master/elixir/Keyword.html

	[15]
	
http://elixir-lang.org/docs/master/elixir/Enum.html

	[16]
	
http://elixir-lang.org/docs/master/elixir/Map.html

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 9
An Aside—What Are Types?

The preceding two chapters described the basics of lists and
maps. But you may have noticed that, although I talked about
them as types, I didn’t really say what I meant.

The first thing to understand is that the primitive data types are not
necessarily the same as the types they can represent.
For example, a primitive Elixir list is just an ordered group of
values. We can use the […] literal to create a list, and the |
operator to deconstruct and build lists.

Then there’s another layer. Elixir has the List module, which
provides a set of functions that operate on lists. Often these
functions simply use recursion and the | operator to add this extra
functionality.

In my mind, there’s a difference between the primitive list and the
functionality of the List module. The primitive list is an
implementation, whereas the List module adds a layer of
abstraction. Both implement types, but the type is
different. Primitive lists, for example, don’t have a flatten
function.

Maps are also a primitive type. And, like lists, they have an Elixir
module that implements a richer, derived map type.

The code that provides the Keyword type is an Elixir module. But the type is represented as a list of tuples:
	​ 	options = [{​:width​, 72}, {​:style​, ​"​​light"​}, {​:style​, ​"​​print"​}]

Clearly this is still a list, and all the list functions will work on
it. But Elixir adds functionality to give you
dictionary-like behavior.
	​ 	​iex>​ options = [{​:width​, 72}, {​:style​, ​"​​light"​}, {​:style​, ​"​​print"​}]
	​ 	[width: 72, style: "light", style: "print"]
	​ 	​iex>​ List.last options
	​ 	{:style, "print"}
	​ 	​iex>​ Keyword.get_values options, ​:style​
	​ 	["light", "print"]

In a way, this is a form of the duck typing that is talked about in
dynamic object-oriented languages.[17] The Keyword
module doesn’t have an underlying primitive data type. It simply
assumes that any value it works on is a list that has been structured
a certain way.

This means the APIs for collections in Elixir are fairly
broad. Working with a keyword list, you have access to the APIs in the
primitive list type, and the List and Keyword modules. You also get
Enum and Collectable, which we talk about next.

Footnotes

	[17]
	
http://en.wikipedia.org/wiki/Duck_typing

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	The Enum module
	The Stream module
	The Collectable protocol
	Comprehensions

 Chapter
 10
Processing Collections—Enum and Stream

Elixir comes with a number of types that act as collections. We’ve
already seen lists and maps.
Ranges, files, and even functions can also act as collections. And as we’ll discuss
when we look at protocols, you
can also define your own.

Collections differ in their implementation. But they all share
something: you can iterate through them. Some of them share an
additional trait: you can add things to them.

Technically, things that can be iterated are said to implement the
Enumerable protocol.

Elixir provides two modules that have a bunch of iteration
functions. The Enum module is the workhorse for collections. You’ll
use it all the time. I strongly recommend getting to
know it.

The Stream module lets you enumerate a collection
lazily. This means that the next value is calculated only when it is
needed. You’ll use this less often, but when you do it’s a lifesaver.

I don’t want to fill this book with a list of all the
APIs. You’ll find the definitive (and up-to-date) list
online.[18] Instead, I’ll illustrate some common
uses and let you browse the documentation for yourself. (But please
do remember to do so. Much of Elixir’s power comes from these
libraries.)

Enum—Processing Collections

The Enum module is probably the most used of all the Elixir
libraries. Employ it to iterate, filter, combine, split, and otherwise
manipulate collections. Here are some common tasks:
	
Convert any collection into a list:

	​ 	iex> list = Enum.to_list 1..5
	​ 	[1, 2, 3, 4, 5]

	
Concatenate collections:

	​ 	iex> Enum.concat([1,2,3], [4,5,6])
	​ 	[1, 2, 3, 4, 5, 6]
	​ 	iex> Enum.concat [1,2,3], ​'abc'​
	​ 	[1, 2, 3, 97, 98, 99]

	
Create collections whose elements are some function of the original:

	​ 	iex> Enum.map(list, &(&1 * 10))
	​ 	[10, 20, 30, 40, 50]
	​ 	iex> Enum.map(list, &String.duplicate(​"​​*"​, &1))
	​ 	[​"​​*"​, ​"​​**"​, ​"​​***"​, ​"​​****"​, ​"​​*****"​]

	
Select elements by position or criteria:

	​ 	iex> Enum.at(10..20, 3)
	​ 	13
	​ 	iex> Enum.at(10..20, 20)
	​ 	nil
	​ 	iex> Enum.at(10..20, 20, ​:no_one_here​)
	​ 	​:no_one_here​
	​ 	iex> Enum.filter(list, &(&1 > 2))
	​ 	[3, 4, 5]
	​ 	iex> ​require​ Integer ​# to get access to is_even​
	​ 	Integer
	​ 	iex> Enum.filter(list, &Integer.is_even/1)
	​ 	[2, 4]
	​ 	iex> Enum.reject(list, &Integer.is_even/1)
	​ 	[1, 3, 5]

	
Sort and compare elements:

	​ 	iex> Enum.sort [​"​​there"​, ​"​​was"​, ​"​​a"​, ​"​​crooked"​, ​"​​man"​]
	​ 	[​"​​a"​, ​"​​crooked"​, ​"​​man"​, ​"​​there"​, ​"​​was"​]
	​ 	iex> Enum.sort [​"​​there"​, ​"​​was"​, ​"​​a"​, ​"​​crooked"​, ​"​​man"​],
	​ 	...> &(String.length(&1) <= String.length(&2))
	​ 	[​"​​a"​, ​"​​was"​, ​"​​man"​, ​"​​there"​, ​"​​crooked"​]
	​ 	iex(4)> Enum.max [​"​​there"​, ​"​​was"​, ​"​​a"​, ​"​​crooked"​, ​"​​man"​]
	​ 	​"​​was"​
	​ 	iex(5)> Enum.max_by [​"​​there"​, ​"​​was"​, ​"​​a"​, ​"​​crooked"​, ​"​​man"​], &String.length/1
	​ 	​"​​crooked"​

	
Split a collection:

	​ 	iex> Enum.take(list, 3)
	​ 	[1, 2, 3]
	​ 	iex> Enum.take_every list, 2
	​ 	[1, 3, 5]
	​ 	iex> Enum.take_while(list, &(&1 < 4))
	​ 	[1, 2, 3]
	​ 	iex> Enum.split(list, 3)
	​ 	{[1, 2, 3], [4, 5]}
	​ 	iex> Enum.split_while(list, &(&1 < 4))
	​ 	{[1, 2, 3], [4, 5]}

	
Join a collection:

	​ 	iex> Enum.join(list)
	​ 	​"​​12345"​
	​ 	iex> Enum.join(list, ​"​​, "​)
	​ 	​"​​1, 2, 3, 4, 5"​

	
Predicate operations:

	​ 	iex> Enum.all?(list, &(&1 < 4))
	​ 	false
	​ 	iex> Enum.any?(list, &(&1 < 4))
	​ 	true
	​ 	iex> Enum.member?(list, 4)
	​ 	true
	​ 	iex> Enum.empty?(list)
	​ 	false

	
Merge collections:

	​ 	iex> Enum.zip(list, [​:a​, ​:b​, ​:c​])
	​ 	[{1, ​:a​}, {2, ​:b​}, {3, ​:c​}]
	​ 	iex> Enum.with_index([​"​​once"​, ​"​​upon"​, ​"​​a"​, ​"​​time"​])
	​ 	[{​"​​once"​, 0}, {​"​​upon"​, 1}, {​"​​a"​, 2}, {​"​​time"​, 3}]

	
Fold elements into a single value:

	​ 	iex> Enum.reduce(1..100, &(&1+&2))
	​ 	5050
	​ 	iex> Enum.reduce([​"​​now"​, ​"​​is"​, ​"​​the"​, ​"​​time"​],​fn​ word, longest ->
	​ 	...> ​if​ String.length(word) > String.length(longest) ​do​
	​ 	...> word
	​ 	...> ​else​
	​ 	...> longest
	​ 	...> ​end​
	​ 	...> ​end​)
	​ 	​"​​time"​
	​ 	iex> Enum.reduce([​"​​now"​, ​"​​is"​, ​"​​the"​, ​"​​time"​], 0, ​fn​ word, longest ->
	​ 	...> ​if​ String.length(word) > longest,
	​ 	...> ​do​: String.length(word),
	​ 	...> ​else​: longest
	​ 	...> ​end​)
	​ 	4

	
Deal a hand of cards:

	​ 	iex> ​import​ Enum
	​ 	iex> deck = for rank <- ​'23456789TJQKA'​, suit <- ​'CDHS'​, ​do​: [suit,rank]
	​ 	[​'C2'​, ​'D2'​, ​'H2'​, ​'S2'​, ​'C3'​, ​'D3'​, ...]
	​ 	iex> deck |> shuffle |> take(13)
	​ 	[​'DQ'​, ​'S6'​, ​'HJ'​, ​'H4'​, ​'C7'​, ​'D6'​, ​'SJ'​, ​'S9'​, ​'D7'​, ​'HA'​, ​'S4'​, ​'C2'​, ​'CT'​]
	​ 	iex> hands = deck |> shuffle |> chunk(13)
	​ 	[[​'D8'​, ​'CQ'​, ​'H2'​, ​'H3'​, ​'HK'​, ​'H9'​, ​'DK'​, ​'S9'​, ​'CT'​, ​'ST'​, ​'SK'​, ​'D2'​, ​'HA'​],
	​ 	 [​'C5'​, ​'S3'​, ​'CK'​, ​'HQ'​, ​'D3'​, ​'D4'​, ​'CA'​, ​'C8'​, ​'S6'​, ​'DQ'​, ​'H5'​, ​'S2'​, ​'C4'​],
	​ 	 [​'C7'​, ​'C6'​, ​'C2'​, ​'D6'​, ​'D7'​, ​'SA'​, ​'SQ'​, ​'H8'​, ​'DT'​, ​'C3'​, ​'H7'​, ​'DA'​, ​'HT'​],
	​ 	 [​'S5'​, ​'S4'​, ​'C9'​, ​'S8'​, ​'D5'​, ​'H4'​, ​'S7'​, ​'SJ'​, ​'HJ'​, ​'D9'​, ​'DJ'​, ​'CJ'​, ​'H6'​]]

A Note on Sorting

In our example of sort, we used
	​ 	​iex>​ Enum.sort [​"​​there"​, ​"​​was"​, ​"​​a"​, ​"​​crooked"​, ​"​​man"​],
	​ 	​...>​ &(String.length(&1) <= String.length(&2))

It’s important to use <= and not just <
if you want the sort to be stable.

Your Turn
	Exercise: ListsAndRecursion-5

Implement the following Enum functions using no library functions or
list comprehensions: all?, each, filter, split, and take. You may need to use
an if statement to implement filter. The syntax for this is
	​ 	​if​ condition ​do​
	​ 	 expression(s)
	​ 	​else​
	​ 	 expression(s)
	​ 	​end​

	Exercise: ListsAndRecursion-6

(Hard) Write a flatten(list) function that takes a list that may contain
any number of sublists, which themselves may contain sublists, to
any depth. It returns the elements of these lists as a flat list.
	​ 	​iex>​ MyList.flatten([1, [2, 3, [4]], 5, [[[6]]]])
	​ 	[1,2,3,4,5,6]

Hint: You may have to use Enum.reverse to get your result in the
correct order.

Streams—Lazy Enumerables

In Elixir, the Enum module is greedy. This means that when you pass
it a collection, it potentially consumes all the contents of that
collection. It also means the result will typically be another
collection. Look at the following pipeline:
enum/pipeline.exs
	​ 	[1, 2, 3, 4, 5]
	​ 	 ​#=> [1, 2, 3, 4, 5]​
	​ 	|> Enum.map(&(&1*&1))
	​ 	 ​#=> [1, 4, 9, 16, 25]​
	​ 	|> Enum.with_index
	​ 	 ​#=> [{1, 0}, {4, 1}, {9, 2}, {16, 3}, {25, 4}]​
	​ 	|> Enum.map(​fn​ {value, index} -> value - index ​end​)
	​ 	 ​#=> [1, 3, 7, 13, 21]​
	​ 	|> IO.inspect ​#=> [1, 3, 7, 13, 21]​

The first map function takes the original list and creates a new list
of its squares. with_index takes this list and returns a list of
tuples. The next map then subtracts the index from the value,
generating a list that gets passed to IO.inspect.

So, this pipeline generates four lists on its way to outputting the final
result.

Let’s look at something different. Here’s some code that reads lines
from a file and returns the longest:
enum/longest_line.exs
	​ 	IO.puts File.read!(​"​​/usr/share/dict/words"​)
	​ 	 |> String.split
	​ 	 |> Enum.max_by(&String.length/1)

In this case, we read the whole dictionary into memory (on my machine
that’s 2.4MB), then split it into a list of words (236,000 of them) before
processing it to find the longest (which happens to be
formaldehydesulphoxylate).

In both of these examples, our code is suboptimal because
each call to Enum is self-contained. Each call takes a
collection and returns a collection.

What we really want is to process the elements in the collection as
we need them. We don’t need to store intermediate results as full
collections; we just need to pass the current element from
function to function. And that’s what streams do.
A Stream Is a Composable Enumerator

Here’s a simple example of creating a Stream:
	​ 	​iex>​ s = Stream.map [1, 3, 5, 7], &(&1 + 1)
	​ 	#Stream<[enum: [1, 3, 5, 7], funs: [#Function<46.3851/1 in Stream.map/2>]]>

If we’d called Enum.map, we’d have seen the result [2,4,6,8] come
back immediately. Instead we get back a stream value that
contains a specification of what we intended.

How do we get the stream to start giving us results? Treat it as
a collection and pass it to a function in the Enum module:
	​ 	​iex>​ s = Stream.map [1, 3, 5, 7], &(&1 + 1)
	​ 	#Stream<[enum: [1, 3, 5, 7], funs: [#Function<46.3851/1 in Stream.map/2>]]>
	​ 	​iex>​ Enum.to_list s
	​ 	[2, 4, 6, 8]

Because streams are enumerable, you can also pass a stream to a stream
function. Because of this, we say that streams are composable.
	​ 	​iex>​ squares = Stream.map [1, 2, 3, 4], &(&1*&1)
	​ 	#Stream<[enum: [1, 2, 3, 4],
	​ 	 funs: [#Function<32.133702391 in Stream.map/2>]]>
	​ 	
	​ 	​iex>​ plus_ones = Stream.map squares, &(&1+1)
	​ 	#Stream<[enum: [1, 2, 3, 4],
	​ 	 funs: [#Function<32.133702391 in Stream.map/2>,
	​ 	 #Function<32.133702391 in Stream.map/2>]]>
	​ 	
	​ 	​iex>​ odds = Stream.filter plus_ones, ​fn​ x -> rem(x,2) == 1 ​end​
	​ 	#Stream<[enum: [1, 2, 3, 4],
	​ 	 funs: [#Function<26.133702391 in Stream.filter/2>,
	​ 	 #Function<32.133702391 in Stream.map/2>,
	​ 	 #Function<32.133702391 in Stream.map/2>]]>
	​ 	
	​ 	​iex>​ Enum.to_list odds
	​ 	[5, 17]

Of course, in real life we’d have written this as
enum/stream1.exs
	​ 	[1,2,3,4]
	​ 	|> Stream.map(&(&1*&1))
	​ 	|> Stream.map(&(&1+1))
	​ 	|> Stream.filter(​fn​ x -> rem(x,2) == 1 ​end​)
	​ 	|> Enum.to_list

Note that we’re never creating intermediate lists—we’re just passing
successive elements of each of the collections to the next in the
chain. The Stream values shown in the previous IEx session
give a hint of how this works—chained streams are represented as a
list of functions, each of which is applied in turn to each element of
the stream as it is processed.

Streams aren’t only for lists. More and more Elixir modules now
support streams. For example, here’s our longest-word code written
using streams:
enum/stream2.exs
	​ 	IO.puts File.open!(​"​​/usr/share/dict/words"​)
	​ 	 |> IO.stream(​:line​)
	​ 	 |> Enum.max_by(&String.length/1)

The magic here is the call to IO.stream, which converts an IO device
(in this case the open file) into a stream that
serves one line at a time. In fact, this is such a useful concept that
there’s a shortcut:
enum/stream3.exs
	​ 	IO.puts File.stream!(​"​​/usr/share/dict/words"​) |> Enum.max_by(&String.length/1)

The good news is that there is no intermediate storage. The bad news
is that it runs about two times slower
than the previous version. However, consider the case where we were
reading data from a remote server or from an external sensor (maybe
temperature readings). Successive lines might arrive slowly, and
 they might go on for ever. With the Enum implementation
we’d have to wait for all the lines to arrive before we started
processing. With streams we can process them as they arrive.
Infinite Streams

Because streams are lazy, there’s no need for the whole collection to
be available up front. For example, if I write
	​ 	​iex>​ Enum.map(1..10_000_000, &(&1+1)) |> Enum.take(5)
	​ 	[2, 3, 4, 5, 6]

it takes about 8 seconds before I see the result. Elixir is creating a
10-million-element list, then taking the first five elements from
it. If instead I write
	​ 	​iex>​ Stream.map(1..10_000_000, &(&1+1)) |> Enum.take(5)
	​ 	[2, 3, 4, 5, 6]

the result comes back instantaneously. The take call just needs five
values, which it gets from the stream. Once it has them, there’s no
more processing.

In these examples the stream is bounded, but it can equally well go on
forever. To do that, we’ll need to create streams based on
functions.
Creating Your Own Streams

Streams are implemented solely in Elixir libraries—there is
no specific runtime support. However, this doesn’t mean you want to
drop down to the very lowest level and create your own streamable
types. The actual implementation is complex (in the same way that
string theory and dating rituals are complex). Instead, you probably
want to use some helpful wrapper functions to do the heavy lifting. There are a number of these, including cycle, repeatedly, iterate,
unfold, and resource. (If you needed proof that the
internal implementation is tricky, consider the fact that these last two names
give you almost no hint of their power.)

Let’s start with the three simplest: cycle, repeatedly, and
iterate.
Stream.cycle

Stream.cycle takes an enumerable and returns an infinite stream containing
that enumerable’s elements. When it gets to the end, it
repeats from the beginning, indefinitely. Here’s an example that
generates the rows in an HTML table with alternating green and
white classes:
	​ 	iex> Stream.cycle(​~​w{ green white }) |>
	​ 	...> Stream.zip(1..5) |>
	​ 	...> Enum.map(​fn​ {class, value} ->
	​ 	...> ​"​​<tr class='​​#{​class​}​​'><td>​​#{​value​}​​</td></tr>\n"​ ​end​) |>
	​ 	...> IO.puts
	​ 	<tr class=​"​​green"​​>​<td>1</td​>​</tr>
	​ 	<tr class=​"​​white"​​>​<td>2</td​>​</tr>
	​ 	<tr class=​"​​green"​​>​<td>3</td​>​</tr>
	​ 	<tr class=​"​​white"​​>​<td>4</td​>​</tr>
	​ 	<tr class=​"​​green"​​>​<td>5</td​>​</tr>
	​ 	​:ok​

Stream.repeatedly

Stream.repeatedly takes a
function and invokes it each time a new value is wanted.
	​ 	​iex>​ Stream.repeatedly(​fn​ -> true ​end​) |> Enum.take(3)
	​ 	[true, true, true]
	​ 	​iex>​ Stream.repeatedly(&​:random​.uniform/0) |> Enum.take(3)
	​ 	[0.7230402056221108, 0.94581636451987, 0.5014907142064751]

Stream.iterate

Stream.iterate(start_value, next_fun) generates
an infinite stream. The first value is start_value. The next value
is generated by applying next_fun to this value. This continues for
as long as the stream is being used, with each value being the result
of applying next_fun to the previous value.

Here are some examples:
	​ 	​iex>​ Stream.iterate(0, &(&1+1)) |> Enum.take(5)
	​ 	[0, 1, 2, 3, 4]
	​ 	​iex>​ Stream.iterate(2, &(&1*&1)) |> Enum.take(5)
	​ 	[2, 4, 16, 256, 65536]
	​ 	​iex>​ Stream.iterate([], &[&1]) |> Enum.take(5)
	​ 	[[], [[]], [[[]]], [[[[]]]], [[[[[]]]]]]

Stream.unfold

Now we can get a little more adventurous. Stream.unfold is related
to iterate, but you can be more explicit both about the values
output to the stream and about the values passed to the next
iteration. You supply an initial value and a function.
The function uses the argument to create two
values, returned as a tuple. The first is the value to be returned by
this iteration of the stream, and the second is the value to be passed
to the function on the next iteration of the stream. If the
function returns nil, the stream terminates.

This sounds abstract, but unfold is quite useful—it
is a general way of creating a potentially infinite stream of values
where each value is some function of the previous state.

The key is the generating function. Its general form is
	​ 	fn state -> { stream_value, new_state } end

For example, here’s a stream of Fibonacci numbers:
	​ 	​iex>​ Stream.unfold({0,1}, ​fn​ {f1,f2} -> {f1, {f2, f1+f2}} ​end​) |> Enum.take(15)
	​ 	[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377]

Here the state is a tuple containing the current and the next number
in the sequence. We seed it with the initial state of {0, 1}. The
value each iteration of the stream returns is the first of the
state values. The new state moves one down the sequence, so an initial
state of {f1,f2} becomes a new state of {f2,f1+f2}.
Stream.resource

At this point you might be wondering how streams can interact with
external resources. We’ve already seen how you can turn a file’s contents into a stream of lines, but how could you implement this
yourself? You’d need to open the file when the stream first starts,
 return successive lines, and then close the file at the end. Or
maybe you want to turn a database result-set cursor into a stream of
values. You’d have to execute the query when the stream starts,
return each row as stream values, and close the query at
the end. And that’s where Stream.resource comes in.

Stream.resource builds upon Stream.unfold. It makes two
changes.

The first argument to unfold is the initial value to be
passed to the iteration function. But if that value is a resource, we
don’t want to open it until the stream starts delivering
values, and that might not happen until long after we create the
stream. To get around this, resource takes not a value, but a
function that returns the value. That’s the first change.

Second, when the stream is done with the resource, we may need to
close it. That’s what the third argument to Stream.resource does—it
takes the final accumulator value and does whatever is needed to
deallocate the resource.

Here’s an example from the library documentation:
	​ 	Stream.resource(​fn​ -> File.open!(​"​​sample"​) ​end​,
	​ 	 ​fn​ file ->
	​ 	 ​case​ IO.read(file, ​:line​) ​do​
	​ 	 data ​when​ is_binary(data) -> {[data], file}
	​ 	 _ -> {​:halt​, file}
	​ 	 ​end​
	​ 	 ​end​,
	​ 	 ​fn​ file -> File.close(file) ​end​)

The first function opens the file when the stream becomes active,
and passes it to the second function. This reads the file, line by line,
returning either a line and the file as a tuple, or a :halt tuple at
the end of the file. The third function closes the file.

Let’s finish with a different kind of resource: time. We’ll implement
a timer that counts down the number of seconds until the start of the
next minute. It uses a stream resource to do this. The allocation
function returns the number of seconds left until the next minute
starts. It does this each time the stream is evaluated, so we’ll
get a countdown that varies depending on when it is called.

The iteration function looks at the time left. If zero, it returns
{:halt, 0}; otherwise it sleeps for a second and returns the current countdown
as a string, along with the decremented counter.

In this case there’s no resource deallocation, so the third function
does nothing.

Here’s the code:
enum/countdown.exs
	​ 	​defmodule​ Countdown ​do​
	​ 	
	​ 	 ​def​ sleep(seconds) ​do​
	​ 	 ​receive​ ​do​
	​ 	 ​after​ seconds*1000 -> nil
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ say(text) ​do​
	​ 	 spawn ​fn​ -> ​:os​.cmd(​'say #{text}'​) ​end​
	​ 	 ​end​

	​ 	 ​def​ timer ​do​
	​ 	 Stream.resource(
	​ 	 ​fn​ -> ​# the number of seconds to the start of the next minute​
	​ 	 {_h,_m,s} = ​:erlang​.time
	​ 	 60 - s - 1
	​ 	 ​end​,
	​ 	
	​ 	 ​fn​ ​# wait for the next second, then return its countdown​
	​ 	 0 ->
	​ 	 {​:halt​, 0}
	​ 	
	​ 	 count ->
	​ 	 sleep(1)
	​ 	 { [inspect(count)], count - 1 }
	​ 	 ​end​,
	​ 	
	​ 	 ​fn​ _ -> nil ​end​ ​# nothing to deallocate​
	​)
	​ 	 ​end​
	​ 	​end​

(The eagle-eyed among you will have noticed a function called say in
the Countdown module. This executes the shell command say, which,
on OS X, speaks its argument. You could substitute
espeak on Linux and ptts on Windows.)

Let’s play with the code.
	​ 	$ iex countdown.exs
	​ 	​iex>​ counter = Countdown.timer
	​ 	#Function<17.133702391/2 in Stream.resource/3>
	​ 	
	​ 	​iex>​ printer = counter |> Stream.each(&IO.puts/1)
	​ 	#Stream[enum: #Function<17.133702391/2 in Stream.resource/3>,
	​ 	 funs: [#Function<0.133702391/1 in Stream.each/2>]]>
	​ 	
	​ 	​iex>​ speaker = printer |> Stream.each(&Countdown.say/1)
	​ 	#Stream[enum: #Function<17.133702391/2 in Stream.resource/3>,
	​ 	 funs: [#Function<0.13370239/1 in Stream.each/2>,
	​ 	 #Function<0.133702391/1 in Stream.each/2>]]>

So far, we’ve built a stream that creates time events, prints the
countdown value, and speaks it. But there’s been no output, as we
haven’t yet asked the stream for any values. Let’s do that now:
	​ 	​iex>​ speaker |> Enum.take(5)
	​ 	37 ​**​ numbers are output once
	​ 	36 ​**​ per second. Even cooler, the
	​ 	35 ​**​ computer says
	​ 	34 ​**​ "thirty seven", "thirty six"…
	​ 	33
	​ 	["37", "36", "35", "34", "33"]

Cool—we must have started it around 22 seconds into a minute, so the
countdown starts at 37. Let’s use the same stream again, a few seconds
later:
	​ 	​iex>​ speaker |> Enum.take(3)
	​ 	29
	​ 	28
	​ 	27
	​ 	["29", "28", "27"]

Wait some more seconds, and this time let it run to the top of the minute:
	​ 	​iex>​ speaker |> Enum.to_list
	​ 	6
	​ 	5
	​ 	4
	​ 	3
	​ 	2
	​ 	1
	​ 	["6", "5", "4", "3","2", "1"]

This is clearly not great code, as it fails to correct the sleep time
for any delays introduced by our code. But it illustrates a very cool
point. Lazy streams let you deal with resources that are asynchronous
to your code, and the fact that they are initialized every time they
are used means they’re effectively side effect–free. Every time we
pipe our stream to an Enum function, we get a fresh set of values,
computed at that time.
Streams in Practice

In the same way that functional programming requires you to look at
problems in a new way, streams ask you to look at iteration and
collections afresh. Not every situation where you’re iterating
requires a stream. But consider using a stream when you want to defer
processing until you need the data, and when you
need to deal with large numbers of things without necessarily
generating them all at once.

The Collectable Protocol

The Enumerable protocol lets you iterate over the elements in a
type—given a collection, you can get the elements. Collectable is in
some sense the opposite—it allows you to build a collection by
inserting elements into it.

Not all collections are collectable. Ranges, for example, cannot have
new entries added to them.

The collectable API is pretty low-level, so you’ll typically access it
via Enum.into and when using comprehensions (which we cover in the
next section). For example, we can inject the elements of a range into
an empty list using
	​ 	​iex>​ Enum.into 1..5, []
	​ 	[1, 2, 3, 4, 5]

If the list is not empty, the new elements are tacked onto the end:
	​ 	​iex>​ Enum.into 1..5, [100, 101]
	​ 	[100, 101, 1, 2, 3, 4, 5]

Output streams are collectable, so the following code lazily copies
standard input to standard output:
	​ 	​iex>​ Enum.into IO.stream(​:stdio​, ​:line​), IO.stream(​:stdio​, ​:line​)

Comprehensions

When you’re writing functional code, you often map
and filter collections of things. To make your life easier (and
your code easier to read), Elixir provides a general-purpose shortcut
for this: the comprehension.

The idea of a comprehension is fairly simple: given one or more
collections, extract all combinations of values from each, optionally
filter the values, and then generate a new collection using the
values that remain.

The general syntax for comprehensions is deceptively simple:

result = for generator or filter… [, into: value], do: expression

Let’s see a couple of basic examples before we get into the details.
	​ 	​iex>​ for x <- [1, 2, 3, 4, 5], ​do​: x * x
	​ 	[1, 4, 9, 16, 25]
	​ 	​iex>​ for x <- [1, 2, 3, 4, 5], x < 4, ​do​: x * x
	​ 	[1, 4, 9]

A generator specifies how you want to extract values
from a collection.
	​ 	pattern <- enumerable_thing

Any variables matched in the pattern are available in the rest
of the comprehension (including the block). For example, x <-
[1,2,3] says that we want to first run the rest of the comprehension with x
set to 1. Then we run it with x set to 2, and so on. If we have two
generators, their operations are nested, so
	​ 	x <- [1,2], y <- [5,6]

will run the rest of the comprehension with x=1, y=5; x=1,
y=6; x=2, y=5; and x=2, y=6. We can use those values of x
and y in the do block:
	​ 	​iex>​ for x <- [1,2], y <- [5,6], ​do​: x * y
	​ 	[5, 6, 10, 12]
	​ 	​iex>​ for x <- [1,2], y <- [5,6], ​do​: {x, y}
	​ 	[{1, 5}, {1, 6}, {2, 5}, {2, 6}]

You can use variables from generators in later generators:
	​ 	​iex>​ min_maxes = [{1,4}, {2,3}, {10, 15}]
	​ 	[{1, 4}, {2, 3}, {10, 15}]
	​ 	​iex>​ for {min,max} <- min_maxes, n <- min..max, ​do​: n
	​ 	[1, 2, 3, 4, 2, 3, 10, 11, 12, 13, 14, 15]

A filter is a predicate. It acts as a
gatekeeper for the rest of the comprehension—if the condition is
false, then the comprehension moves on to the next iteration without
generating an output value.

For example, the code that follows uses a comprehension to list pairs
of numbers from 1 to 8 whose product is a multiple of
10. It uses two generators (to cycle through the pairs of numbers) and
two filters. The first filter allows only pairs in which the first number
is at least the value of the second. The second filter checks to see
if the product is a multiple of 10.
	​ 	​iex>​ first8 = [1,2,3,4,5,6,7,8]
	​ 	[1, 2, 3, 4, 5, 6, 7, 8]
	​ 	​iex>​ for x <- first8, y <- first8, x >= y, rem(x*y, 10)==0, ​do​: { x, y }
	​ 	[{5, 2}, {5, 4}, {6, 5}, {8, 5}]

This comprehension iterates 64 times, with x=1, y=1; x=1, y=2;
and so on. However, the first filter cuts the iteration short when x
is less than y. This means the second filter runs only 36 times.

Because the first term in a generator is a pattern, we can use it to
deconstruct structured data. Here’s a comprehension that swaps the
keys and values in a keyword list.
	​ 	​iex>​ reports = [​dallas:​ ​:hot​, ​minneapolis:​ ​:cold​, ​dc:​ ​:muggy​, ​la:​ ​:smoggy​]
	​ 	[dallas: :hot, minneapolis: :cold, dc: :muggy, la: :smoggy]
	​ 	​iex>​ for { city, weather } <- reports, ​do​: { weather, city }
	​ 	[hot: :dallas, cold: :minneapolis, muggy: :dc, smoggy: :la]

Comprehensions Work on Bits, Too

A bitstring (and, by extension, a binary or a
string) is simply a collection of ones and zeroes. So it’s probably no
surprise that comprehensions work on bits, too. What might be
surprising is the syntax:
	​ 	​iex>​ for << ch <- ​"​​hello"​ >>, ​do​: ch
	​ 	'hello'
	​ 	​iex>​ for << ch <- ​"​​hello"​ >>, ​do​: <<ch>>
	​ 	["h", "e", "l", "l", "o"]

Here the generator is enclosed in << and >>, indicating a
binary. In the first case, the do block returns the integer code for
each character, so the resulting list is [104, 101, 108, 108, 111],
which IEx displays as ’hello’.

In the second case, we convert the code back into a string, and the
result is a list of those one-character strings.

Again, the thing to the left of the <- is a pattern, and so we can
use binary pattern matching. Let’s convert a string into the octal
representation of its characters:
	​ 	​iex>​ for << << b1::size(2), b2::size(3), b3::size(3) >> <- ​"​​hello"​ >>,
	​ 	​...>​ ​do​: ​"​​0​​#{​b1​}#{​b2​}#{​b3​}​​"​
	​ 	["0150", "0145", "0154", "0154", "0157"]

Scoping and Comprehensions

All variable assignments inside a comprehension are local to that
comprehension—you will not affect the value of a variable in the outer
scope.
	​ 	​iex>​ name = ​"​​Dave"​
	​ 	Dave
	​ 	​iex>​ for name <- [​"​​cat"​, ​"​​dog"​], ​do​: String.upcase(name)
	​ 	["CAT", "DOG"]
	​ 	​iex>​ name
	​ 	Dave
	​ 	​iex>​

The Value Returned by a Comprehension

In our examples thus far, the comprehension has returned a
list. The list contains the values returned by the do expression for each
iteration of the comprehension.

This behavior can be changed with the into: parameter. This takes a
collection that is to receive the results of the comprehension. For example,
we can populate a map using
	​ 	​iex>​ for x <- ​~​w{ cat dog }, ​into:​ %{}, ​do​: { x, String.upcase(x) }
	​ 	%{"cat" => "CAT", "dog" => "DOG"}

It might be more clear to use Map.new in this case:
	​ 	​iex>​ for x <- ​~​w{ cat dog }, ​into:​ Map.new, ​do​: { x, String.upcase(x) }
	​ 	%{"cat" => "CAT", "dog" => "DOG"}

The collection doesn’t have to be empty:

	​ 	​iex>​ for x <- ​~​w{ cat dog }, ​into:​ %{​"​​ant"​ => ​"​​ANT"​}, ​do​: { x, String.upcase(x) }
	​ 	%{"ant" => "ANT", "cat" => "CAT", "dog" => "DOG"}

In Chapter 24, ​Protocols—Polymorphic Functions​, we’ll look at protocols, which let
us specify common behaviors across different types. The into: option
takes values that implement the Collectable protocol. These include
lists, binaries, functions, maps, files, hash dicts, hash sets, and IO
streams, so we can write things such as

	​ 	​iex>​ for x <- ​~​w{ cat dog }, ​into:​ IO.stream(​:stdio​,​:line​), ​do​: ​"​​<<​​#{​x​}​​>>\n"​
	​ 	<<cat>>
	​ 	<<dog>>
	​ 	%IO.Stream{device: :standard_io, line_or_bytes: :line, raw: false}

Your Turn
	Exercise: ListsAndRecursion-7

In the last exercise of Chapter 7, ​Lists and Recursion​, you wrote
a span function. Use it and list comprehensions to return a list
of the prime numbers from 2 to n.

	Exercise: ListsAndRecursion-8

The Pragmatic Bookshelf has offices in Texas (TX) and
North Carolina
(NC), so we have to charge sales tax on orders shipped to these
states. The rates can be expressed as a keyword list (I wish it were that simple.…):
	​ 	tax_rates = [NC: 0.075, TX: 0.08]

Here’s a list of orders:
	​ 	orders = [
	​ 	 [id: 123, ship_to: :NC, net_amount: 100.00],
	​ 	 [id: 124, ship_to: :OK, net_amount: 35.50],
	​ 	 [id: 125, ship_to: :TX, net_amount: 24.00],
	​ 	 [id: 126, ship_to: :TX, net_amount: 44.80],
	​ 	 [id: 127, ship_to: :NC, net_amount: 25.00],
	​ 	 [id: 128, ship_to: :MA, net_amount: 10.00],
	​ 	 [id: 129, ship_to: :CA, net_amount: 102.00],
	​ 	 [id: 130, ship_to: :NC, net_amount: 50.00]]

Write a function that takes both lists and returns a copy of the
orders, but with an extra field, total_amount, which is the net
plus sales tax. If a shipment is not to NC or TX, there’s no tax
applied.

Moving Past Divinity

L. Peter Deutsch once penned, “To iterate is human, to recurse divine.”
And that’s certainly the way I felt when I first started coding
Elixir. The joy of pattern-matching lists in sets of recursive
functions drove my designs. After a while, I realized that perhaps I
was taking this too far.

In reality, most of our day-to-day work is better handled using the
various enumerators built into Elixir. They make your code smaller,
easier to understand, and probably more efficient.

Part of the process of learning to be effective in Elixir is working
out for yourself when to use recursion and when to use enumerators. I recommend enumerating when you can.

Next we’ll look at string handling in Elixir (and Erlang).

Footnotes

	[18]
	
http://elixir-lang.org/docs/

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	Strings and string literals
	Character lists (single-quoted literals)
	Pattern matching and processing strings

 Chapter
 11
Strings and Binaries

We’ve been using strings without really discussing them. Let’s
rectify that.

String Literals

Elixir has two kinds of string: single-quoted and double-quoted. They
differ significantly in their internal representation. But they also
have many things in common.
	
Strings can hold characters in UTF-8 encoding.

	
They may contain escape sequences:

	\a
	BEL (0x07)
	\b
	BS (0x08)
	\d
	DEL (0x7f)

	\e
	ESC (0x1b)
	\f
	FF (0x0c)
	\n
	NL (0x0a)

	\r
	CR (0x0d)
	\s
	SP (0x20)
	\t
	TAB (0x09)

	\v
	VT (0x0b)
	\uhhh
	1–6 hex digits
	\xhh
	2 hex digits

	
They allow interpolation on Elixir expressions using the syntax #{...}:

	​ 	​iex>​ name = "dave"
	​ 	"dave"
	​ 	​iex>​ "Hello, #{String.capitalize name}!"
	​ 	"Hello, Dave!"

	
Characters that would otherwise have special meaning can be escaped with a backslash.

	
They support heredocs.

Heredocs

Any string can span several lines. To illustrate this, we’ll use both
IO.puts and IO.write. We use write for the multiline string
because puts always appends a newline, and we want to see the
contents without this.
	​ 	IO.puts ​"​​start"​
	​ 	IO.write ​"​
	​ 	​ my​
	​ 	​ string​
	​ 	​"​
	​ 	IO.puts ​"​​end"​

produces
	​ 	start
	​ 	
	​ 	 my
	​ 	 string
	​ 	end

Notice how the multiline string retains the leading and trailing
newlines and the leading spaces on the intermediate lines.

The heredoc notation fixes this. Triple the string delimiter (”’
or """) and indent the trailing delimiter to the same margin as
your string contents, and you get this:
	​ 	IO.puts ​"​​start"​
	​ 	IO.write ​"""​
	​ 	​ my​
	​ 	​ string​
	​ 	​ """​
	​ 	IO.puts ​"​​end"​

which produces
	​ 	start
	​ 	my
	​ 	string
	​ 	end

Heredocs are used extensively to add documentation to functions and modules.
Sigils

Like Ruby, Elixir has an alternative syntax for some literals. We’ve
already seen it with regular expressions, where we wrote ~r{...}. In
Elixir, these ~-style literals are called sigils (symbols with
magical powers).

A sigil starts with a tilde, followed by an upper- or lowercase letter,
some delimited content, and perhaps some options. The delimiters can
be <…>, {…}, […], (…), |…|, /…/, "…", and ’…’.

The letter determines the sigil’s type:

	~C
	A character list with no escaping or interpolation

	~c
	A character list, escaped and interpolated just like a single-quoted string

	~D
	A Date in the format yyyy-mm-dd

	~N
	A naive (raw) DateTime in the format yyyy-mm-dd hh:mm:ss[.ddd]

	~R
	A regular expression with no escaping or interpolation

	~r
	A regular expression, escaped and interpolated

	~S
	A string with no escaping or interpolation

	~s
	A string, escaped and interpolated just like a double-quoted string

	~T
	A Time in the format hh:mm:ss[.dddd]

	~W
	A list of whitespace-delimited words, with no escaping or interpolation

	~w
	A list of whitespace-delimited words, with escaping and interpolation

Here are some examples of sigils, using a variety of delimiters:
	​ 	​iex>​ ​~​C[1\n2​#{1+2}]​
	​ 	'1\\n2\#{1+2}'
	​ 	​iex>​ ​~​c​"​​1\n2​​#{​1+2​}​​"​
	​ 	'1\n23'
	​ 	​iex>​ ​~​S[1\n2​#{1+2}]​
	​ 	"1\\n2\#{1+2}"
	​ 	​iex>​ ​~​s/1\n2​#{1+2}/​
	​ 	"1\n23"
	​ 	​iex>​ ​~​W[the c​#{'a'}t sat on the mat]​
	​ 	["the", "c\#{'a'}t", "sat", "on", "the", "mat"]
	​ 	​iex>​ ​~​w[the c​#{'a'}t sat on the mat]​
	​ 	["the", "cat", "sat", "on", "the", "mat"]
	​ 	​iex>​ ​~​D<1999-12-31>
	​ 	~D[1999-12-31]
	​ 	​iex>​ ​~​T[12​:34:56​]
	​ 	~T[12:34:56]
	​ 	​iex>​ ​~​N{1999-12-31 23​:59:59​}
	​ 	~N[1999-12-31 23:59:59]

The ~W and ~w sigils take an optional type specifier, a, c, or s,
which determines whether it returns a list of atoms, character lists, or strings. (We’ve already seen the ~r options.)
	​ 	​iex>​ ​~​w[the c​#{'a'}t sat on the mat]a​
	​ 	[:the, :cat, :sat, :on, :the, :mat]
	​ 	​iex>​ ​~​w[the c​#{'a'}t sat on the mat]c​
	​ 	['the', 'cat', 'sat', 'on', 'the', 'mat']
	​ 	​iex>​ ​~​w[the c​#{'a'}t sat on the mat]s​
	​ 	["the", "cat", "sat", "on", "the", "mat"]

The delimiter can be any nonword character. If it is (, [, {, or <, then the terminating delimiter is the
corresponding closing character. Otherwise the terminating delimiter
is the next nonescaped occurrence of the opening delimiter.

Elixir does not check the nesting of delimiters, so the sigil
~s{a{b} is the three-character string a{b.

If the opening delimiter is three single or three double quotes, the
sigil is treated as a heredoc.
	​ 	​iex>​ ​~​w​"​​"​​"​
	​ 	​...>​​ the​
	​ 	​...>​​ cat​
	​ 	​...>​​ sat​
	​ 	​...>​​ "​​"​​"​
	​ 	["the", "cat", "sat"]

If you want to specify modifiers with heredoc sigils (most commonly
you’d do this with ~r), add them after the trailing delimiter.
	​ 	​iex>​ ​~​r​"​​"​​"​
	​ 	​...>​​ hello​
	​ 	​...>​​ "​​"​​"​i
	​ 	~r/hello\n/i

One of the interesting things about sigils is that you can define your
own. We talk about this in Part III,.

The Name “strings”

Before we get further into this, I need to explain something. In
most other languages, you’d call both ’cat’ and "cat"
strings. And that’s what I’ve been doing so far. But Elixir has a
different convention.

In Elixir, the convention is that we call only double-quoted strings
“strings.” The single-quoted form is a character list.

This is important. The single- and double-quoted forms are
very different, and libraries that work on strings
work only on the double-quoted form.

Let’s explore the differences in more detail.

Single-Quoted Strings—Lists of Character Codes

Single-quoted strings are represented as a list of integer values,
each value corresponding to a codepoint in the string. For this
reason, we refer to them as character lists (or char lists).
	​ 	​iex>​ str = ​'wombat'​
	​ 	'wombat'
	​ 	​iex>​ is_list str
	​ 	true
	​ 	​iex>​ length str
	​ 	6
	​ 	​iex>​ Enum.reverse str
	​ 	'tabmow'

This is confusing: IEx says it is a list, but it shows the value as
a string. That’s because IEx prints a list of integers as a string if
it believes each number in the list is a printable character. You can
try this for yourself:
	​ 	​iex>​ [67, 65, 84]
	​ 	'CAT'

You can look at the internal representation in a number of ways:
	​ 	​iex>​ str = ​'wombat'​
	​ 	'wombat'
	​ 	​iex>​ ​:io​.format ​"​​~w~n"​, [str]
	​ 	[119,111,109,98,97,116]
	​ 	:ok
	​ 	​iex>​ List.to_tuple str
	​ 	{119, 111, 109, 98, 97, 116}
	​ 	​iex>​ str ++ [0]
	​ 	[119, 111, 109, 98, 97, 116, 0]

The ~w in the format string forces str to be written as an Erlang
term—the underlying list of integers. The ~n is a newline.

The last example creates a new character list with a null byte at the
end. IEx no longer thinks all the bytes are printable, and so
returns the underlying character codes.

If a character list contains characters Erlang considers nonprintable, you’ll
see the list representation.
	​ 	​iex>​ ​'∂x/∂y'​
	​ 	[8706, 120, 47, 8706, 121]

Because a character list is a list, we can use the usual pattern
matching and List functions.
	​ 	​iex>​ ​'pole'​ ++ ​'vault'​
	​ 	'polevault'
	​ 	​iex>​ ​'pole'​ -- ​'vault'​
	​ 	'poe'
	​ 	​iex>​ List.zip [​'abc'​, ​'123'​]
	​ 	[{97, 49}, {98, 50}, {99, 51}]
	​ 	​iex>​ [head | tail] = ​'cat'​
	​ 	'cat'
	​ 	​iex>​ head
	​ 	99
	​ 	​iex>​ tail
	​ 	'at'
	​ 	​iex>​ [head | tail]
	​ 	'cat'

Why is the head of ’cat’ 99 and not c?. Remember that a char list is
just a list of integer character codes, so each individual entry is a
number. It happens that 99 is the code for a lowercase c.

In fact, the notation ?c returns the integer code for the character
c. This is often useful when employing patterns to extract information
from character lists. Here’s a simple module that parses the character-list representation of an optionally signed decimal number.
strings/parse.exs
	​ 	​defmodule​ Parse ​do​
	​ 	
	​ 	 ​def​ number([​?-​ | tail]), ​do​: _number_digits(tail, 0) * -1
	​ 	 ​def​ number([​?+​ | tail]), ​do​: _number_digits(tail, 0)
	​ 	 ​def​ number(str), ​do​: _number_digits(str, 0)
	​ 	
	​ 	 ​defp​ _number_digits([], value), ​do​: value
	​ 	 ​defp​ _number_digits([digit | tail], value)
	​ 	 ​when​ digit ​in​ ​'0123456789'​ ​do​
	​ 	 _number_digits(tail, value*10 + digit - ​?0​)
	​ 	 ​end​
	​ 	 ​defp​ _number_digits([non_digit | _], _) ​do​
	​ 	 ​raise​ ​"​​Invalid digit '​​#{​[non_digit]​}​​'"​
	​ 	 ​end​
	​ 	​end​

Let’s try it in IEx.
	​ 	​iex>​ c(​"​​parse.exs"​)
	​ 	[Parse]
	​ 	​iex>​ Parse.number(​'123'​)
	​ 	123
	​ 	​iex>​ Parse.number(​'-123'​)
	​ 	-123
	​ 	​iex>​ Parse.number(​'+123'​)
	​ 	123
	​ 	​iex>​ Parse.number(​'+9'​)
	​ 	9
	​ 	​iex>​ Parse.number(​'+a'​)
	​ 	​**​ (RuntimeError) Invalid digit 'a'

Your Turn
	Exercise: StringsAndBinaries-1

Write a function that returns true if a single-quoted string contains only
printable ASCII characters (space through tilde).

	Exercise: StringsAndBinaries-2

Write an anagram?(word1, word2) that returns true if its parameters
are anagrams.

	Exercise: StringsAndBinaries-3

Try the following in IEx:
	​ 	​iex>​ [​'cat'​ | ​'dog'​]
	​ 	['cat',100,111,103]

Why does IEx print ’cat’ as a string, but ’dog’ as individual
numbers?

	Exercise: StringsAndBinaries-4

(Hard) Write a function that takes a single-quoted string of the
form number [+-*/] number and returns the result of the
calculation. The individual numbers do not have leading plus or
minus signs.

calculate(’123 + 27’) # => 150

Binaries

The binary type represents a sequence of bits.

A binary literal looks like << term,… >>.

The simplest term is just a number from 0 to 255.
The numbers are stored as successive bytes in the binary.

	​ 	​iex>​ b = << 1, 2, 3 >>
	​ 	<<1, 2, 3>>
	​ 	​iex>​ byte_size b
	​ 	3
	​ 	​iex>​ bit_size b
	​ 	24

You can specify modifiers to set any term’s size (in bits). This
is useful when working with binary formats such as media files and
network packets.
	​ 	​iex>​ b = << 1::size(2), 1::size(3) >> ​# 01 001​
	​ 	<<9::size(5)>> # = 9 (base 10)
	​ 	​iex>​ byte_size b
	​ 	1
	​ 	​iex>​ bit_size b
	​ 	5

You can store integers, floats, and other binaries in binaries.
	​ 	​iex>​ int = << 1 >>
	​ 	<<1>>
	​ 	​iex>​ float = << 2.5 :: float >>
	​ 	<<64, 4, 0, 0, 0, 0, 0, 0>>
	​ 	​iex>​ mix = << int :: binary, float :: binary >>
	​ 	<<1, 64, 4, 0, 0, 0, 0, 0, 0>>

Let’s finish an initial look at binaries with an example of bit
extraction. An IEEE 754 float has a sign bit, 11 bits of exponent, and
52 bits of mantissa. The exponent is biased by 1023, and the mantissa
is a fraction with the top bit assumed to be 1. So we can extract the
fields and then use :math.pow, which performs exponentiation, to
reassemble the number:
	​ 	​iex>​ << sign::size(1), exp::size(11), mantissa::size(52) >> = << 3.14159::float >>
	​ 	​iex>​ (1 + mantissa / ​:math​.pow(2, 52)) * ​:math​.pow(2, exp-1023) * (1 - 2*sign)
	​ 	3.14159

Double-Quoted Strings Are Binaries

Whereas single-quoted strings are stored as char lists, the contents
of a double-quoted string (dqs) are stored as a consecutive sequence
of bytes in UTF-8 encoding. Clearly this is more efficient in terms of
memory and certain forms of access, but it does have two implications.

First, because UTF-8 characters can take more than a single byte to
represent, the size of the binary is not necessarily the length of the
string.
	​ 	​iex>​ dqs = ​"​​∂x/∂y"​
	​ 	"∂x/∂y"
	​ 	​iex>​ String.length dqs
	​ 	5
	​ 	​iex>​ byte_size dqs
	​ 	9
	​ 	​iex>​ String.at(dqs, 0)
	​ 	"∂"
	​ 	​iex>​ String.codepoints(dqs)
	​ 	["∂", "x", "/", "∂", "y"]
	​ 	​iex>​ String.split(dqs, ​"​​/"​)
	​ 	["∂x", "∂y"]

Second, because you’re no longer using lists, you need to learn and
work with the binary syntax alongside the list syntax in your
code.
Strings and Elixir Libraries

When Elixir library documentation uses the word string (and most of
the time it uses the word binary), it means double-quoted strings.

The String module defines functions that work with
double-quoted strings.
	at(str, offset)
	
Returns the grapheme at the given offset (starting at 0). Negative
offsets count from the end of the string.

		​ 	​iex>​ String.at(​"​​∂og"​, 0)
	​ 	"∂"
	​ 	​iex>​ String.at(​"​​∂og"​, -1)
	​ 	"g"

	capitalize(str)
	
Converts str to lowercase, and then capitalizes the first character.

		​ 	​iex>​ String.capitalize ​"​​école"​
	​ 	"École"
	​ 	​iex>​ String.capitalize ​"​​ÎÎÎÎÎ"​
	​ 	"Îîîîî"

	codepoints(str)
	
Returns the codepoints in str.

		​ 	​iex>​ String.codepoints(​"​​José's ∂øg"​)
	​ 	["J", "o", "s", "é", "'", "s", " ", "∂", "ø", "g"]

	downcase(str)
	
Converts str to lowercase.

		​ 	​iex>​ String.downcase ​"​​ØRSteD"​
	​ 	"ørsted"

	duplicate(str, n)
	
Returns a string containing n copies of str.

		​ 	​iex>​ String.duplicate ​"​​Ho! "​, 3
	​ 	"Ho! Ho! Ho! "

	ends_with?(str, suffix | [suffixes])
	
Returns true if str ends with any of the given suffixes.

		​ 	​iex>​ String.ends_with? ​"​​string"​, [​"​​elix"​, ​"​​stri"​, ​"​​ring"​]
	​ 	true

	first(str)
	
Returns the first grapheme from str.

		​ 	​iex>​ String.first ​"​​∂og"​
	​ 	"∂"

	graphemes(str)
	
Returns the graphemes in the string. This is different from the
codepoints function, which lists combining characters
separately. The following example uses a combining diaeresis along with the letter e to represent ë. (It might not display properly on your ereader.)

		​ 	​iex>​ String.codepoints ​"​​noe\u0308l"​
	​ 	["n", "o", "e", "̈", "l"]
	​ 	​iex>​ String.graphemes ​"​​noe\u0308l"​
	​ 	["n", "o", "ë", "l"]

	jaro_distance
	
Returns a float between 0 and 1 indicating the likely similarity of two strings.

		​ 	​iex>​ String.jaro_distance(​"​​jonathan"​, ​"​​jonathon"​)
	​ 	0.9166666666666666
	​ 	​iex>​ String.jaro_distance(​"​​josé"​, ​"​​john"​)
	​ 	0.6666666666666666

	last(str)
	
Returns the last grapheme from str.

		​ 	​iex>​ String.last ​"​​∂og"​
	​ 	"g"

	length(str)
	
Returns the number of graphemes in str.

		​ 	​iex>​ String.length ​"​​∂x/∂y"​
	​ 	5

	myers_difference
	
Returns the list of transformations needed to convert one string to another.

		​ 	​iex>​ String.myers_difference(​"​​banana"​, ​"​​panama"​)
	​ 	[del: "b", ins: "p", eq: "ana", del: "n", ins: "m", eq: "a"]

	next_codepoint(str)
	
Splits str into its leading codepoint and the rest, or
nil if str is empty. This may be
used as the basis of an iterator.

		​ 	​defmodule​ MyString ​do​
	​ 	 ​def​ each(str, func), ​do​: _each(String.next_codepoint(str), func)
	​ 	
	​ 	 ​defp​ _each({codepoint, rest}, func) ​do​
	​ 	 func.(codepoint)
	​ 	 _each(String.next_codepoint(rest), func)
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ _each(nil, _), ​do​: []
	​ 	​end​
	​ 	
	​ 	MyString.each ​"​​∂og"​, ​fn​ c -> IO.puts c ​end​

produces
	​ 	∂
	​ 	o
	​ 	g

	next_grapheme(str)
	
Same as next_codepoint, but returns graphemes (:no_grapheme on completion).

	pad_leading(str, new_length, padding \\ " ")
	
Returns a new string, at least new_length characters long,
containing str right-justified and padded with padding.

		​ 	​iex>​ String.pad_leading(​"​​cat"​, 5, ​"​​>"​)
	​ 	">>cat"

	pad_trailing(str, new_length, padding \\ " ")
	
Returns a new string, at least new_length characters long,
containing str left-justified and padded with padding.

		​ 	​iex>​ String.pad_trailing(​"​​cat"​, 5)
	​ 	"cat "

	printable?(str)
	
Returns true if str contains only printable characters.

		​ 	​iex>​ String.printable? ​"​​José"​
	​ 	true
	​ 	​iex>​ String.printable? ​"​​\x00 a null"​
	​ 	false

	replace(str, pattern, replacement, options \\ [global: true, insert_replaced: nil])
	
Replaces pattern with replacement in str under control of options.

	
If the :global option is true, all occurrences of the pattern are
replaced; otherwise only the first is replaced.

	
If :insert_replaced is a number, the pattern is inserted
into the replacement at that offset. If the option is a list, it is
inserted multiple times.

		​ 	​iex>​ String.replace ​"​​the cat on the mat"​, ​"​​at"​, ​"​​AT"​
	​ 	"the cAT on the mAT"
	​ 	​iex>​ String.replace ​"​​the cat on the mat"​, ​"​​at"​, ​"​​AT"​, ​global:​ false
	​ 	"the cAT on the mat"
	​ 	​iex>​ String.replace ​"​​the cat on the mat"​, ​"​​at"​, ​"​​AT"​, ​insert_replaced:​ 0
	​ 	"the catAT on the matAT"
	​ 	​iex>​ String.replace ​"​​the cat on the mat"​, ​"​​at"​, ​"​​AT"​, ​insert_replaced:​ [0,2]
	​ 	"the catATat on the matATat"

	reverse(str)
	
Reverses the graphemes in a string.

		​ 	​iex>​ String.reverse ​"​​pupils"​
	​ 	"slipup"
	​ 	​iex>​ String.reverse ​"​​∑ƒ÷∂"​
	​ 	"∂÷ƒ∑"

	slice(str, offset, len)
	
Returns a len character substring starting at offset (measured
from the end of str if negative).

		​ 	​iex>​ String.slice ​"​​the cat on the mat"​, 4, 3
	​ 	"cat"
	​ 	​iex>​ String.slice ​"​​the cat on the mat"​, -3, 3
	​ 	"mat"

	split(str, pattern \\ nil, options \\ [global: true])
	
Splits str into substrings delimited by pattern. If :global is
false, only one split is performed. pattern can be a string, a
regular expression, or nil. In the latter case, the string is split
on whitespace.

		​ 	​iex>​ String.split ​"​​ the cat on the mat "​
	​ 	["the", "cat", "on", "the", "mat"]
	​ 	​iex>​ String.split ​"​​the cat on the mat"​, ​"​​t"​
	​ 	["", "he ca", " on ", "he ma", ""]
	​ 	​iex>​ String.split ​"​​the cat on the mat"​, ​~​r{[ae]}
	​ 	["th", " c", "t on th", " m", "t"]
	​ 	​iex>​ String.split ​"​​the cat on the mat"​, ​~​r{[ae]}, ​parts:​ 2
	​ 	["th", " cat on the mat"]

	starts_with?(str, prefix | [prefixes])
	
Returns true if str starts with any of the given prefixes.

		​ 	​iex>​ String.starts_with? ​"​​string"​, [​"​​elix"​, ​"​​stri"​, ​"​​ring"​]
	​ 	true

	trim(str)
	
Trims leading and trailing whitespace from str.

		​ 	​iex>​ String.trim ​"​​\t Hello \r\n"​
	​ 	"Hello"

	trim(str, character)
	
Trims leading and trailing instances of character from str.

		​ 	​iex>​ String.trim ​"​​!!!SALE!!!"​, ​"​​!"​
	​ 	"SALE"

	trim_leading(str)
	
Trims leading whitespace from str.

		​ 	​iex>​ String.trim_leading ​"​​\t\f Hello\t\n"​
	​ 	"Hello\t\n"

	trim_leading(str, character)
	
Trims leading copies of character (an integer codepoint) from str.

		​ 	​iex>​ String.trim_leading ​"​​!!!SALE!!!"​, ​"​​!"​
	​ 	"SALE!!!"

	trim_trailing(str)
	
Trims trailing whitespace from str.

		​ 	​iex>​ String.trim_trailing(​"​​ line \r\n"​)
	​ 	" line"

	trim_trailing(str, character)
	
Trims trailing occurrences of character from str.

		​ 	​iex>​ String.trim_trailing ​"​​!!!SALE!!!"​, ​"​​!"​
	​ 	"!!!SALE"

upcase(str)
	
	
	
	
		​ 	​iex>​ String.upcase ​"​​José Ørstüd"​
	​ 	"JOSÉ ØRSTÜD"

	valid?(str)
	
Returns true if str is a string containing valid codepoints.

		​ 	​iex>​ String.valid? ​"​​∂"​
	​ 	true
	​ 	​iex>​ String.valid? ​"​​∂og"​
	​ 	true
	​ 	​iex>​ String.valid? << 0x80, 0x81 >>
	​ 	false

Your Turn
	Exercise: StringsAndBinaries-5

Write a function that takes a list of double-quoted strings and prints each on a
separate line, centered in a column that has the width of the
longest string. Make sure it works with UTF characters.
	​ 	​iex>​ center([​"​​cat"​, ​"​​zebra"​, ​"​​elephant"​])
	​ 	 cat
	​ 	 zebra
	​ 	elephant

Binaries and Pattern Matching

The first rule of binaries is “if in doubt, specify the type of
each field.” Available types are binary, bits, bitstring, bytes,
float, integer, utf8, utf16, and utf32. You can also add
qualifiers:

	size(n): The size of the field, in bits.
	signed or unsigned: For integer fields, should it be interpreted
as signed?
	endianness: big, little, or native.

Use hyphens to separate multiple attributes for a field:
	​ 	<< length::unsigned-integer-size(12), flags::bitstring-size(4) >> = data

However, unless you’re doing a lot of work with binary file or
protocol formats, the most common use of all this scary stuff is to
process UTF-8 strings.
String Processing with Binaries

When we process lists, we use patterns that split the head from the
rest of the list. With binaries that hold strings, we can do the same
kind of trick. We have to specify the type of the head (UTF-8), and
make sure the tail remains a binary.
strings/utf-iterate.ex
	​ 	​defmodule​ Utf8 ​do​
	​ 	 ​def​ each(str, func) ​when​ is_binary(str), ​do​: _each(str, func)
	​ 	
	​ 	 ​defp​ _each(<< head :: utf8, tail :: binary >>, func) ​do​
	​ 	 func.(head)
	​ 	 _each(tail, func)
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ _each(<<>>, _func), ​do​: []
	​ 	​end​
	​ 	
	​ 	Utf8.each ​"​​∂og"​, ​fn​ char -> IO.puts char ​end​

produces
	​ 	8706
	​ 	111
	​ 	103

The parallels with list processing are clear, but the differences are
significant. Rather than use [head | tail], we use << head::utf8,
tail::binary >>. And rather than terminate when we reach the empty
list, [], we look for an empty binary, <<>>.

Your Turn
	Exercise: StringsAndBinaries-6

Write a function to capitalize the sentences in a string.
Each sentence is terminated by a period
and a space. Right now, the case of the characters in the string is
random.
	​ 	​iex>​ capitalize_sentences(​"​​oh. a DOG. woof. "​)
	​ 	"Oh. A dog. Woof. "

	Exercise: StringsAndBinaries-7

Chapter 7 had an exercise about calculating sales tax. We now have the
sales information in a file of comma-separated id, ship_to, and
amount values. The file looks like this:
	​ 	id,ship_to,net_amount
	​ 	123,:NC,100.00
	​ 	124,:OK,35.50
	​ 	125,:TX,24.00
	​ 	126,:TX,44.80
	​ 	127,:NC,25.00
	​ 	128,:MA,10.00
	​ 	129,:CA,102.00
	​ 	120,:NC,50.00

Write a function that reads and parses this file and then passes
the result to the sales_tax function. Remember that the data should
be formatted into a keyword list, and that the fields need to be the
correct types (so the id field is an integer, and so on).

You’ll need the library functions File.open, IO.read(file,
:line), and IO.stream(file).

Familiar Yet Strange

String handling in Elixir is the result of a long evolutionary process
in the underlying Erlang environment. If we were starting from
scratch, things would probably look a little different. But once you get
over the slightly strange way that strings are matched using binaries,
you’ll find that it works out well. In particular,
pattern matching makes it very easy to look to strings that start with
a particular sequence, which in turn makes simple parsing tasks a
pleasure to write.

You may have noticed that we’re a long way into the book and haven’t
yet talked about control-flow constructs such as if and case. This is
deliberate: we use them less often in Elixir than in more conventional
languages. However, we still need them, so they are the subject of the
next chapter.

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	if and unless
	cond (a multiway if)
	case (a pattern-matching switch)
	Exceptions

 Chapter
 12
Control Flow

Elixir code tries to be declarative, not imperative.

In Elixir we write lots of small functions, and a combination of guard
clauses and pattern matching of parameters replaces most of the
control flow seen in other languages.

However, Elixir does have a small set of control-flow constructs. The
reason I’ve waited so long to introduce them is that I want you to try
not to use them much. You definitely will, and should, drop the
occasional cond or case into your code. But before you do, consider
more functional alternatives. The benefit will become obvious as you
write more code—functions written without explicit control flow tend
to be shorter and more focused. They’re easier to read, test, and
reuse. If you end up with a 10- or 20-line function in an Elixir
program, it is pretty much guaranteed that it will contain one of the
constructs in this chapter and that you can simplify it.

So, forewarned, let’s go.

if and unless

In Elixir, if and its evil twin, unless, take two parameters: a
condition and a keyword list, which can contain the keys do: and
else:. If the condition is truthy, the if expression
evaluates the code associated with the do: key; otherwise it
evaluates the else: code. The else: branch may be absent.
	​ 	​iex>​ ​if​ 1 == 1, ​do​: ​"​​true part"​, ​else​: ​"​​false part"​
	​ 	"true part"

	​ 	​iex>​ ​if​ 1 == 2, ​do​: ​"​​true part"​, ​else​: ​"​​false part"​
	​ 	"false part"

Just as it does with function definitions, Elixir provides some syntactic
sugar. You can write the first of the previous examples as follows:
	​ 	​iex>​ ​if​ 1 == 1 ​do​
	​ 	​...>​ ​"​​true part"​
	​ 	​...>​ ​else​
	​ 	​...>​ ​"​​false part"​
	​ 	​...>​ ​end​
	​ 	true part

unless is similar:
	​ 	​iex>​ ​unless​ 1 == 1, ​do​: ​"​​error"​, ​else​: ​"​​OK"​
	​ 	"OK"
	​ 	​iex>​ ​unless​ 1 == 2, ​do​: ​"​​OK"​, ​else​: ​"​​error"​
	​ 	"OK"
	​ 	​iex>​ ​unless​ 1 == 2 ​do​
	​ 	​...>​ ​"​​OK"​
	​ 	​...>​ ​else​
	​ 	​...>​ ​"​​error"​
	​ 	​...>​ ​end​
	​ 	"OK"

The value of if and unless is the value of the expression that was
evaluated.

cond

The cond macro lets you list out a series of conditions, each with
associated code. It executes the code corresponding to the first
truthy conditions.

In the game of FizzBuzz, children count up from 1. If the number
is a multiple of three, they say “Fizz.” For multiples of five, they say
“Buzz.” For multiples of both, they say “FizzBuzz.” Otherwise, they say the
number.

In Elixir, we could code this as follows:
control/fizzbuzz.ex
	​1: 	​defmodule​ FizzBuzz ​do​
	​- 	
	​- 	 ​def​ upto(n) ​when​ n > 0, ​do​: _upto(1, n, [])
	​- 	
	​5: 	 ​defp​ _upto(_current, 0, result), ​do​: Enum.reverse result
	​- 	
	​- 	 ​defp​ _upto(current, left, result) ​do​
	​- 	 next_answer =
	​- 	 ​cond​ ​do​
	​10: 	 rem(current, 3) == 0 ​and​ rem(current, 5) == 0 ->
	​- 	 ​"​​FizzBuzz"​
	​- 	 rem(current, 3) == 0 ->
	​- 	 ​"​​Fizz"​
	​- 	 rem(current, 5) == 0 ->
	​15: 	 ​"​​Buzz"​
	​- 	 true ->
	​- 	 current
	​- 	 ​end​
	​- 	 _upto(current+1, left-1, [next_answer | result])
	​20: 	 ​end​
	​- 	​end​

The cond starts on line 8. We assign the value of the cond expression to
next_answer. Inside the cond, we have four alternatives—the current
number is a multiple of 3 and 5, just 3, just 5, or neither. Elixir
examines each in turn and returns the value of the expression
following the -> for the first true one. The _upto function then
recurses to find the next value. Note the use of true -> to
handle the case where none of the previous conditions match. This is
the equivalent of the else or default stanza of a more traditional
case statement.

There’s a minor problem, though. The result list we build always has
the most recent value as its head. When we finish, we’ll end up with a
list that has the answers in reverse order. That’s why in the anchor
case (when left is zero), we reverse the result before returning
it. This is a very common pattern. And don’t worry about
performance—list reversal is highly optimized.

Let’s try the code in IEx:
	​ 	​iex>​ c(​"​​fizzbuzz.ex"​)
	​ 	[FizzBuzz]
	​ 	​iex>​ FizzBuzz.upto(20)
	​ 	[1, 2, "Fizz", 4, "Buzz", "Fizz", 7, 8, "Fizz", "Buzz", 11, "Fizz",
	​ 	.. 13, 14, "FizzBuzz", 16, 17, "Fizz", 19, "Buzz"]

In this case, we could do something different and remove
the call to reverse. If we process the numbers in reverse order (so
we start at n and end at 1), the resulting list will be in the
correct order.
control/fizzbuzz1.ex
	​ 	​defmodule​ FizzBuzz ​do​
	​ 	
	​ 	 ​def​ upto(n) ​when​ n > 0, ​do​: _downto(n, [])
	​ 	
	​ 	 ​defp​ _downto(0, result), ​do​: result
	​ 	 ​defp​ _downto(current, result) ​do​
	​ 	 next_answer =
	​ 	 ​cond​ ​do​
	​ 	 rem(current, 3) == 0 ​and​ rem(current, 5) == 0 ->
	​ 	 ​"​​FizzBuzz"​
	​ 	 rem(current, 3) == 0 ->
	​ 	 ​"​​Fizz"​
	​ 	 rem(current, 5) == 0 ->
	​ 	 ​"​​Buzz"​
	​ 	 true ->
	​ 	 current
	​ 	 ​end​
	​ 	 _downto(current-1, [next_answer | result])
	​ 	 ​end​
	​ 	​end​

This code is quite a bit cleaner than the previous version. However,
it is also slightly less idiomatic—readers will expect to traverse the
numbers in a natural order and reverse the result.

There’s a third option. FizzBuzz transforms a number
into a string. We like to code things as
transformations, so let’s use Enum.map to transform the range of
numbers from 1 to n to the corresponding FizzBuzz words.
control/fizzbuzz2.ex
	​ 	​defmodule​ FizzBuzz ​do​
	​ 	 ​def​ upto(n) ​when​ n > 0 ​do​
	​ 	 1..n |> Enum.map(&fizzbuzz/1)
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ fizzbuzz(n) ​do​
	​ 	 ​cond​ ​do​
	​ 	 rem(n, 3) == 0 ​and​ rem(n, 5) == 0 ->
	​ 	 ​"​​FizzBuzz"​
	​ 	 rem(n, 3) == 0 ->
	​ 	 ​"​​Fizz"​
	​ 	 rem(n, 5) == 0 ->
	​ 	 ​"​​Buzz"​
	​ 	 true ->
	​ 	 n
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

This section is intended to show you how cond works, but you’ll
often find that it’s better not to use it, and instead to take advantage of
pattern matching in function calls. The choice is yours.
control/fizzbuzz3.ex
	​ 	​defmodule​ FizzBuzz ​do​
	​ 	 ​def​ upto(n) ​when​ n > 0, ​do​: 1..n |> Enum.map(&fizzbuzz/1)
	​ 	
	​ 	 ​defp​ fizzbuzz(n), ​do​: _fizzword(n, rem(n, 3), rem(n, 5))
	​ 	
	​ 	 ​defp​ _fizzword(_n, 0, 0), ​do​: ​"​​FizzBuzz"​
	​ 	 ​defp​ _fizzword(_n, 0, _), ​do​: ​"​​Fizz"​
	​ 	 ​defp​ _fizzword(_n, _, 0), ​do​: ​"​​Buzz"​
	​ 	 ​defp​ _fizzword(n, _, _), ​do​: n
	​ 	​end​

case

case lets you test a value against a set of patterns, executes
the code associated with the first pattern that matches, and returns the
value of that code. The patterns may include guard clauses.

For example, the File.open function returns a two-element tuple. If the open is
successful, it returns {:ok, file}, where file is an identifier
for the open file. If the open fails, it returns {:error,
reason}. We can use case to take the appropriate action when we
open a file. (Here, the code opens its own source file.)
control/case.ex
	​ 	​case​ File.open(​"​​case.ex"​) ​do​
	​ 	{ ​:ok​, file } ->
	​ 	 IO.puts ​"​​First line: ​​#{​IO.read(file, ​:line​)​}​​"​
	​ 	{ ​:error​, reason } ->
	​ 	 IO.puts ​"​​Failed to open file: ​​#{​reason​}​​"​
	​ 	​end​

produces
	​ 	First line: case File.open("case.ex") do

If we change the file name to something that doesn’t exist and then rerun
the code, we instead get Failed to open file: enoent.

We can use the full power of nested pattern matches:
control/case1.exs
	​ 	​defmodule​ Users ​do​
	​ 	 dave = %{ ​name:​ ​"​​Dave"​, ​state:​ ​"​​TX"​, ​likes:​ ​"​​programming"​ }
	​ 	 ​case​ dave ​do​
	​ 	 %{​state:​ some_state} = person ->
	​ 	 IO.puts ​"​​#{​person.name​}​​ lives in ​​#{​some_state​}​​"​
	​ 	 _ ->
	​ 	 IO.puts ​"​​No matches"​
	​ 	 ​end​
	​ 	​end​

We’ve seen how to employ guard clauses to refine the pattern used
when matching functions. We can do the same with case.
control/case2.exs
	​ 	dave = %{​name:​ ​"​​Dave"​, ​age:​ 27}
	​ 	​case​ dave ​do​
	​ 	 person = %{​age:​ age} ​when​ is_number(age) ​and​ age >= 21 ->
	​ 	 IO.puts ​"​​You are cleared to enter the Foo Bar, ​​#{​person.name​}​​"​
	​ 	 _ ->
	​ 	 IO.puts ​"​​Sorry, no admission"​
	​ 	​end​

Raising Exceptions

First, the official warning: exceptions in Elixir are not control-flow structures. Instead, Elixir exceptions are intended for things
that should never happen in normal operation. That means the database going
down or a name server failing to respond could be considered
exceptional. Failing to open a configuration file whose name is
fixed could be seen as exceptional. However, failing to open a file whose name a user entered is not. (You could anticipate that a user might mistype it every now
and then.)

Raise an exception with the raise function. At its
simplest, you pass it a string and it generates an exception of type
RuntimeError.
	​ 	​iex>​ ​raise​ ​"​​Giving up"​
	​ 	​**​ (RuntimeError) Giving up

You can also pass the type of the exception, along with other optional
attributes. All exceptions implement at least the message attribute.
	​ 	​iex>​ ​raise​ RuntimeError
	​ 	​**​ (RuntimeError) runtime error
	​ 	​iex>​ ​raise​ RuntimeError, ​message:​ ​"​​override message"​
	​ 	​**​ (RuntimeError) override message

You use exceptions far less in Elixir than in other languages—the
design philosophy is that errors should propagate back up to an
external, supervising process. We’ll cover this when we talk about
OTP supervisors.

Elixir has all the usual exception-catching mechanisms. To emphasize
how little you should use them, I’ve described them in an appendix.

Designing with Exceptions

If File.open succeeds, it returns {:ok, file}, where
file is the service that gives you access to the file. If it fails,
it returns {:error, reason}. So, for code that knows a file
open might not succeed and wants to handle the fact, you might
write
	​ 	​case​ File.open(user_file_name) ​do​
	​ 	{​:ok​, file} ->
	​ 	 process(file)
	​ 	{​:error​, message} ->
	​ 	 IO.puts ​:stderr​, ​"​​Couldn't open ​​#{​user_file_name​}​​: ​​#{​message​}​​"​
	​ 	​end​

If instead you expect the file to open successfully every time,
you could raise an exception on failure.
	​ 	​case​ File.open(​"​​config_file"​) ​do​
	​ 	{​:ok​, file} ->
	​ 	 process(file)
	​ 	{​:error​, message} ->
	​ 	 ​raise​ ​"​​Failed to open config file: ​​#{​message​}​​"​
	​ 	​end​

Or you could let Elixir raise an exception for you and write
	​ 	{ ​:ok​, file } = File.open(​"​​config_file"​)
	​ 	process(file)

If the pattern match on the first line fails, Elixir will raise a
MatchError exception. It won’t be as informative as our version that
handled the error explicitly, but if the error should never happen,
this form is probably good enough (at least until it triggers the
first time and the operations folks say they’d like more information).

An even better way to handle this is to use File.open!. The
trailing exclamation point in the method name is an Elixir
convention—if you see it, you know the function will raise an
exception on error, and that exception will be meaningful. So we
could simply write
	​ 	file = File.open!(​"​​config_file"​)

and get on with our lives.

Doing More with Less

Elixir has just a few forms of control flow: if, unless, cond,
case, and (perhaps) raise. But surprisingly, this doesn’t matter
in practice. Elixir programs are rich and expressive without a lot of
branching code. And they’re easier to work with as a result.

That concludes our basic tour of Elixir. Now let’s start putting it all
together and implement a full project.

Your Turn
	Exercise: ControlFlow-1

Rewrite the FizzBuzz example using case.

	Exercise: ControlFlow-2

We now have three different implementations of FizzBuzz. One uses
cond, one uses case, and one uses separate functions with guard
clauses.

Take a minute to look at all three. Which do you feel best expresses
the problem. Which will be easiest to maintain?

The case style and the implementation using guard clauses are
different from control structures in most other languages. If you feel
that one of these was the best implementation, can you think of ways
to remind yourself to investigate these options as you write
Elixir code in the future?

	Exercise: ControlFlow-3

Many built-in functions have two forms. The xxx form returns the
tuple {:ok, data} and the xxx! form returns data on success but
raises an exception otherwise. However, some functions
 don’t have the xxx! form.

Write an ok! function that takes an arbitrary parameter. If the parameter
is the tuple {:ok, data}, return the data. Otherwise, raise an
exception containing information from the parameter.

You could use your function like this:
	​ 	file = ok! File.open(​"​​somefile"​)

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	Project structure
	The mix build tool
	ExUnit testing framework
	Documentation

 Chapter
 13
Organizing a Project

Let’s stop hacking and get serious.

You’ll want to organize your source code, write tests, and handle any
dependencies. And you’ll want to follow Elixir conventions, because
that way you’ll get support from the tools.

In this chapter we’ll look at mix, the Elixir build tool. We’ll
investigate the directory structure it uses and see how to manage
external dependencies. And we’ll end up using ExUnit to write tests
for our code (and to validate the examples in our code’s
documentation). To motivate this, we’ll write a tool that downloads
and lists the n oldest issues from a GitHub project. Along the way,
we’ll need to find some libraries and make some design
decisions typical of an Elixir project. We’ll call our
project issues.

The Project: Fetch Issues from GitHub

GitHub provides a nice web API for fetching
issues.[19] Simply issue a GET request to
	​ 	https://api.github.com/repos/​user​/​project​/issues

and you’ll get back a JSON list of issues. We’ll reformat this, sort
it, and filter out the oldest n, presenting the result as a table:
	​ 	 # | created_at | title
	​ 	----+----------------------+---
	​ 	889 | 2013-03-16T22:03:13Z | MIX_PATH environment variable (of sorts)
	​ 	892 | 2013-03-20T19:22:07Z | Enhanced mix test --cover
	​ 	893 | 2013-03-21T06:23:00Z | mix test time reports
	​ 	898 | 2013-03-23T19:19:08Z | Add mix compile --warnings-as-errors

How Our Code Will Do It

Our program will run from the command line. We’ll need to pass in a
GitHub user name, a project name, and an optional count. This means
we’ll need some basic command-line parsing.

We’ll need to access GitHub as an HTTP client, so we’ll have to find a
library that gives us the client side of HTTP. The response that comes
back will be in JSON, so we’ll need a library that handles JSON,
too. We’ll need to be able to sort the resulting structure. And
finally, we’ll need to lay out selected fields in a table.

We can think of this data transformation in terms of a production
line. Raw data enters at one end and is transformed by each of the
stations in turn.

Here we see data, starting at the command line and ending at pretty
table. At each stage, it undergoes a transformation (parse, fetch,
and so on). These transformations are the functions we write. We’ll
cover each one in turn.

Step 1: Use Mix to Create Our New Project

Mix is a command-line utility that manages Elixir projects. Use it to
create new projects, manage a project’s dependencies, run tests, and
run your code. If you have Elixir installed, you also have mix. Try
running it now:
	​ 	​$ ​​mix​​ ​​help​
	​ 	mix ​# Run the default task (current: mix run)​
	​ 	mix archive ​# List all archives​
	​ 	mix archive.build ​# Archive this project into a .ez file​
	​ 	 : : : :
	​ 	mix new ​# Create a new Elixir project​
	​ 	mix run ​# Run the given file or expression​
	​ 	mix test ​# Run a project's tests​
	​ 	iex -S mix ​# Start IEx and run the default task​

This is a list of the standard tasks that come with
mix. (Your list may be a little different, depending
on your version of Elixir.) For more information on a particular task, use
mix help taskname.

	​ 	​$ ​​mix​​ ​​help​​ ​​deps​
	​ 	
	​ 	List all dependencies and their status.
	​ 	
	​ 	Dependencies must be specified in the `mix.exs` file in one of
	​ 	the following formats:
	​ 	 . . .

You can write your own mix tasks, for a
project and to share between projects.[20]
Create the Project Tree

Each Elixir project lives in its own directory tree. If you use mix to
manage this tree, then you’ll follow the mix conventions
(which are also the conventions of the Elixir community). We’ll use these
conventions in the rest of this chapter.

We’ll call our project issues, so it will go in a directory
named issues. We’ll create this directory using mix.

At the command line, navigate to a place where you want this new
project to live, and type
	​ 	​$ ​​mix​​ ​​new​​ ​​issues​
	​ 	* creating README.md
	​ 	 : :
	​ 	* creating test
	​ 	* creating test/test_helper.exs
	​ 	* creating test/issues_test.exs
	​ 	
	​ 	Your mix project was created successfully.
	​ 	You can use mix to compile it, test it, and more:
	​ 	
	​ 	 cd issues
	​ 	 mix test
	​ 	
	​ 	Run `mix help` for more commands.

In tree form, the newly created files and directories look like this:
	​ 	issues
	​ 	├── .formatter.exs
	​ 	├── .gitignore
	​ 	├── README.md
	​ 	├── config
	​ 	│ └── config.exs
	​ 	├── lib
	​ 	│ └── issues.ex
	​ 	├── mix.exs
	​ 	└── test
	​ 	 ├── issues_test.exs
	​ 	 └── test_helper.exs

Change into the issues/ directory. This is a good time to set up version control. I use
Git, so I do
	​ 	​$ ​​git​​ ​​init​
	​ 	​$ ​​git​​ ​​add​​ ​​.​
	​ 	​$ ​​git​​ ​​commit​​ ​​-m​​ ​​"Initial commit of new project"​

(I don’t want to clutter the book with version-control stuff, so that’s the last time I’ll mention it.
Make sure you follow your own version-control
practices as we go along.)

Our new project contains three directories and some files.
	.formatter.exs
	
Configuration used by the source code formatter

	.gitignore
	
Lists the files and directories generated as by-products of the
build and not to be saved in the repository.

	README.md
	
A place to put a description of your project (in Markdown format).
If you store your project on GitHub, this file’s contents
will appear on the project’s home page.

	config/
	
Eventually we’ll put some application-specific configuration here.

	lib/
	
This is where our project’s source lives. Mix has already added
a top-level module (issues.ex in our case).

	mix.exs
	
This source file contains our project’s configuration options. We will be adding stuff to this as our project progresses.

	test/
	
A place to store our tests. Mix has already created a helper file
and a stub for unit tests of the issues module.

Now our job is to add our code. But before we do, let’s think a
little about the implementation.

Transformation: Parse the Command Line

Let’s start with the command line. We really don’t want to couple the
handling of command-line options into the main body of our program, so
let’s write a separate module to interface between what the user types
and what our program does. By convention this module is called
Project.CLI (so our code would be in Issues.CLI). Also by
convention, the main entry point to this module will be a function
called run that takes an array of command-line arguments.

Where should we put this module?

Elixir has a convention. Inside the lib/ directory, create a
subdirectory with the same name as the project (so we’d create the
directory lib/issues/). This directory will contain the main source
for our application, one module per file. And each module will be
namespaced inside the Issues module—the module naming follows the
directory naming.

In this case, the module we want to write is Issues.CLI—it is
the CLI module nested inside the Issues module. Let’s reflect that
in the directory structure and put cli.ex in the lib/issues
directory:
	​ 	lib
	​ 	├── issues
	​ 	│ └── cli.ex
	​ 	└── issues.ex

Elixir comes bundled with an option-parsing library,[21] so
we will use that. We’ll tell it that -h and --help are possible
switches, and anything else is an argument. It returns a tuple, where
the first element is a keyword list of the options and the second is
a list of the remaining arguments. Our initial CLI module looks
like the following:
project/0/issues/lib/issues/cli.ex
	​ 	​defmodule​ Issues.CLI ​do​
	​ 	
	​ 	 @default_count 4
	​ 	
	​ 	 @moduledoc ​"""​
	​ 	​ Handle the command line parsing and the dispatch to​
	​ 	​ the various functions that end up generating a​
	​ 	​ table of the last _n_ issues in a github project​
	​ 	​ """​
	​ 	
	​ 	 ​def​ run(argv) ​do​
	​ 	 parse_args(argv)
	​ 	 ​end​
	​ 	
	​ 	 @doc ​"""​
	​ 	​ `argv` can be -h or --help, which returns :help.​
	​ 	
	​ 	​ Otherwise it is a github user name, project name, and (optionally)​
	​ 	​ the number of entries to format.​
	​ 	
	​ 	​ Return a tuple of `{ user, project, count }`, or `:help` if help was given.​
	​ 	​ """​
	​ 	 ​def​ parse_args(argv) ​do​
	​ 	 parse = OptionParser.parse(argv, ​switches:​ [​help:​ ​:boolean​],
	​ 	 ​aliases:​ [​h:​ ​:help​])
	​ 	 ​case​ parse ​do​
	​ 	
	​ 	 { [​help:​ true], _, _ }
	​ 	 -> ​:help​
	​ 	
	​ 	 { _, [user, project, count], _ }
	​ 	 -> { user, project, count }
	​ 	
	​ 	 { _, [user, project], _ }
	​ 	 -> { user, project, @default_count }
	​ 	
	​ 	 _ -> ​:help​
	​ 	
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

Write Some Basic Tests

At this point, I get a little nervous if I don’t have some
tests. Fortunately, Elixir comes with a wonderful (and simple) testing
framework called ExUnit.

Have a look at the file test/issues_test.exs.
project/0/issues/test/issues_test.exs
	​ 	​defmodule​ IssuesTest ​do​
	​ 	 ​use​ ExUnit.Case
	​ 	 doctest Issues
	​ 	
	​ 	 test ​"​​greets the world"​ ​do​
	​ 	 assert Issues.hello() == ​:world​
	​ 	 ​end​
	​ 	​end​

It acts as a template for all the test files you write. I
just copy and paste the boilerplate into separate test files as I need
them. So let’s write tests for our CLI module, putting those tests into
the file test/cli_test.exs. (Test file names must end with _test.) We’ll test that the
option parser successfully detects the -h and --help options, and
that it returns the arguments otherwise. We’ll also check that it
supplies a default value for the count if only two arguments are
given.
project/1/issues/test/cli_test.exs
	​ 	​defmodule​ CliTest ​do​
	​ 	 ​use​ ExUnit.Case
	​ 	 doctest Issues
	​ 	
	​ 	 ​import​ Issues.CLI, ​only:​ [​parse_args:​ 1]
	​ 	
	​ 	 test ​"​​:help returned by option parsing with -h and --help options"​ ​do​
	​ 	 assert parse_args([​"​​-h"​, ​"​​anything"​]) == ​:help​
	​ 	 assert parse_args([​"​​--help"​, ​"​​anything"​]) == ​:help​
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​three values returned if three given"​ ​do​
	​ 	 assert parse_args([​"​​user"​, ​"​​project"​, ​"​​99"​]) == { ​"​​user"​, ​"​​project"​, 99 }
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​count is defaulted if two values given"​ ​do​
	​ 	 assert parse_args([​"​​user"​, ​"​​project"​]) == { ​"​​user"​, ​"​​project"​, 4 }
	​ 	 ​end​
	​ 	​end​

These tests all use the basic assert macro that ExUnit provides. This macro is clever—if an assertion fails, it can extract the
values from the expression you pass it, giving you
a nice error message.

To run our tests, we’ll use the mix test task.
	​ 	​issues$ ​​mix​​ ​​test​
	​ 	Compiled lib/issues.ex
	​ 	Compiled lib/issues/cli.ex
	​ 	Generated issues app
	​ 	..
	​ 	
	​ 	Failures:
	​ 	
	​ 	 1) test three values returned if three given (CliTest)
	​ 	 test/cli_test.exs:11
	​ 	 Assertion with == failed
	​ 	 code: parse_args(["user", "project", "99"]) == {"user", "project", 99}
	​ 	 lhs: {"user", "project", "99"}
	​ 	 rhs: {"user", "project", 99}
	​ 	 stacktrace:
	​ 	 test/cli_test.exs:13
	​ 	.
	​ 	Finished in 0.01 seconds
	​ 	4 tests, 1 failures

One of the four tests failed. When we pass a
count as the third parameter, our code blows up. See how the assertion shows
you its type (== in this case), the line of code that failed, and
the two values that we compared. You can see the difference between
the left-hand side (lhs), which is the value returned by parse_args,
and the expected value (the rhs)—if your terminal and your eyes support
it, you’ll see that the "99" in the line labelled lhs:
is colored red, and the 99 in the next line is green. We were
expecting to get a number as the count, but we got a string.

That’s easily fixed. The built-in function String.to_integer
converts a binary (a string) into an integer.

project/1/issues/lib/issues/cli.ex
	​ 	 ​def​ parse_args(argv) ​do​
	​ 	 parse = OptionParser.parse(argv, ​switches:​ [​help:​ ​:boolean​],
	​ 	 ​aliases:​ [​h:​ ​:help​])
	​ 	 ​case​ parse ​do​
	​ 	
	​ 	 { [​help:​ true], _, _ } -> ​:help​
	»	 { _, [user, project, count], _ } -> { user, project,
	»	 String.to_integer(count) }
	​ 	 { _, [user, project], _ } -> { user, project, @default_count }
	​ 	 _ -> ​:help​
	​ 	 ​end​
	​ 	 ​end​

Your Turn
	Exercise: OrganizingAProject-1

Do what I did. Honest. Create the project and write and test the
option parser. It’s one thing to read about it, but you’ll be doing
this a lot, so you may as well start now.

Refactor: Big Function Alert

Our parse_args function is waving two red flags. First, it contains
conditional logic. Second, it is too long. Let’s split it up.
project/1a/issues/lib/issues/cli.ex
	​ 	​def​ parse_args(argv) ​do​
	​ 	 OptionParser.parse(argv, ​switches:​ [​help:​ ​:boolean​],
	​ 	 ​aliases:​ [​h:​ ​:help​])
	​ 	 |> elem(1)
	​ 	 |> args_to_internal_representation()
	​ 	​end​
	​ 	
	​ 	​def​ args_to_internal_representation([user, project, count]) ​do​
	​ 	 { user, project, String.to_integer(count) }
	​ 	​end​
	​ 	
	​ 	​def​ args_to_internal_representation([user, project]) ​do​
	​ 	 { user, project, @default_count }
	​ 	​end​
	​ 	
	​ 	​def​ args_to_internal_representation(_) ​do​ ​# bad arg or --help​
	​ 	 ​:help​
	​ 	​end​

And run the tests:
	​ 	​issues$ ​​mix​​ ​​test​
	​
	​ 	
	​ 	Finished in 0.05 seconds
	​ 	2 doctests, 4 tests, 0 failures

Transformation: Fetch from GitHub

Now let’s continue down our data-transformation chain. Having parsed
our arguments, we need to transform them by fetching data from
GitHub. So we’ll extend our run function to call a
process function, passing it the value returned from the parse_args
function. We could have written this:
	​ 	process(parse_args(argv))

But to understand this code, you have to read it right to left. I
prefer to make the chain more explicit using the Elixir pipe operator:
project/1a/issues/lib/issues/cli.ex
	​ 	​def​ run(argv) ​do​
	​ 	 argv
	​ 	 |> parse_args
	​ 	 |> process
	​ 	​end​

We need two variants of the process function. One handles the case
where the user asked for help and parse_args returned :help. The
other handles the case where a user, a project, and a count are returned.
project/1a/issues/lib/issues/cli.ex
	​ 	​def​ process(​:help​) ​do​
	​ 	 IO.puts ​"""​
	​ 	​ usage: issues <user> <project> [count | #{@default_count}]​
	​ 	​ """​
	​ 	 System.halt(0)
	​ 	​end​
	​ 	
	​ 	​def​ process({user, project, _count}) ​do​
	​ 	 Issues.GithubIssues.fetch(user, project)
	​ 	​end​

We can use mix to run our function. Let’s first see if help
gets displayed.
	​ 	​$ ​​mix​​ ​​run​​ ​​-e​​ ​​'Issues.CLI.run(["-h"])'​
	​ 	usage: issues <user> <project> [count | 4]

You pass mix run an Elixir expression, which gets evaluated in the
context of your application. Mix will recompile your application, as it
is out of date, before executing the expression.

If we pass it user and project names, however, it’ll blow up because
we haven’t written that code yet.
	​ 	% mix run -e 'Issues.CLI.run(["elixir-lang", "elixir"])'
	​ 	** (UndefinedFunctionError) undefined function: Issues.GithubIssues.fetch/2
	​ 	 GithubIssues.fetch("elixir-lang", "elixir")

Let’s write that code now. Our program will act as an HTTP
client, accessing GitHub through its web API. So, it looks like we’ll
need an external library.

Step 2: Use Libraries

Elixir comes with a bunch of libraries preinstalled.
Some are written in Elixir, and others in Erlang.

The first port of call is
http://elixir-lang.org/docs.html, the Elixir
documentation. Often you’ll find a built-in library that does what
you want.

Next, see if any standard Erlang libraries do what you
need. This isn’t a simple task. Visit
http://erlang.org/doc/ and look in the left sidebar
for Application Groups. There you’ll find libraries sorted by
top-level category.

If you find what you’re looking for in either of these places,
you’re all set, as all these libraries are already available to your
application. But if the built-in libraries
don’t contain what you need, you’ll have to add
an external dependency.
Finding an External Library

Package managers: Ruby has RubyGems, Python has pip, Node.js has npm.

And Elixir has hex.

Visit https://hex.pm and search its list of packages that
integrate nicely with a mix-based project.

If all else fails, Google and GitHub are your friends. Search for
terms such as elixir http client or erlang distributed logger, and
you’re likely to turn up the libraries you need.

In our case, we need an HTTP client. We find that Elixir has nothing
built in, but hex.pm has a number of HTTP client libraries.

To me, HTTPoison looks like a good option. So how do we include
it in our project?
Adding a Library to Your Project

Mix takes the view that all external libraries should be copied into
the project’s directory structure. The good news is that it handles all
this for us—we just need to list the dependencies, and it does the
rest. Remember the mix.exs file at the top level of our project? Here is that
original version.
project/0/issues/mix.exs
	​ 	​defmodule​ Issues.MixProject ​do​
	​ 	 ​use​ Mix.Project
	​ 	
	​ 	 ​def​ project ​do​
	​ 	 [
	​ 	 ​app:​ ​:issues​,
	​ 	 ​version:​ ​"​​0.1.0"​,
	​ 	 ​elixir:​ ​"​​~> 1.6-dev"​,
	​ 	 ​start_permanent:​ Mix.env() == ​:prod​,
	​ 	 ​deps:​ deps()
	​]
	​ 	 ​end​
	​ 	
	​ 	 ​# Run "mix help compile.app" to learn about applications.​
	​ 	 ​def​ application ​do​
	​ 	 [
	​ 	 ​extra_applications:​ [​:logger​]
	​]
	​ 	 ​end​
	​ 	
	​ 	 ​# Run "mix help deps" to learn about dependencies.​
	​ 	 ​defp​ deps ​do​
	​ 	 [
	​ 	 ​# {:dep_from_hexpm, "~> 0.3.0"},​
	​ 	 ​# {:dep_from_git, git: "https://github.com/elixir-lang/my_dep.git", tag: "0.1.0"},​
	​]
	​ 	 ​end​
	​ 	​end​

We add new dependencies to the deps function. As the HTTPoison
package is in hex.pm, that’s very simple. We just give the
name and the version we want.
project/1a/issues/mix.exs
	​ 	​defp​ deps ​do​
	​ 	 [
	​ 	 { ​:httpoison​, ​"​​~> 1.0.0"​ }
	​]
	​ 	​end​

In this case, we give the version as "~> 1.0.0". This
matches any version of HTTPoison with a major version of 1 and a minor
version of 0 or greater. In IEx, type h Version for more details.

Once your mix.exs file is updated, you’re ready to have mix manage your
dependencies.

Use mix deps to list the dependencies and their status:
	​ 	​$ ​​mix​​ ​​deps​
	​ 	* httpoison (package)
	​ 	 the dependency is not available, run `mix deps.get`

Download the dependencies with mix deps.get:
	​ 	Resolving Hex dependencies...
	​ 	Dependency resolution completed:
	​ 	 certifi 2.0.0
	​ 	 hackney 1.10.1
	​ 	 httpoison 0.13.0
	​ 	 idna 5.1.0
	​ 	 metrics 1.0.1
	​ 	 mimerl 1.0.2
	​ 	 ssl_verify_fun 1.1.1
	​ 	 unicode_util_compat 0.3.1
	​ 	* Getting httpoison (Hex package)
	​ 	 Checking package (https://repo.hex.pm/tarballs/httpoison-0.13.0.tar)
	​ 	 Using locally cached package
	​ 	 . . .

Run mix deps again:
	​ 	* mimerl (Hex package) (rebar3)
	​ 	 locked at 1.0.2 (mimerl) 993f9b0e
	​ 	 the dependency build is outdated, please run "mix deps.compile"
	​ 	* metrics (Hex package) (rebar3)
	​ 	 locked at 1.0.1 (metrics) 25f094de
	​ 	 the dependency build is outdated, please run "mix deps.compile"
	​ 	* unicode_util_compat (Hex package) (rebar3)
	​ 	 locked at 0.3.1 (unicode_util_compat) a1f612a7
	​ 	 the dependency build is outdated, please run "mix deps.compile"
	​ 	 . . .
	​ 	* httpoison (Hex package) (mix)
	​ 	 locked at 0.9.0 (httpoison) 68187a2d
	​ 	 the dependency build is outdated, please run "mix deps.compile"

This shows that the HTTPoison library is installed but that it hasn’t
yet been compiled. Mix also remembers the exact version of each
library it installs in the file mix.lock. This means that at any
point in the future you can get the same version of the library you
use now.

Don’t worry that the library isn’t compiled—mix will automatically
compile it the first time we need it.

If you look at your project tree, you’ll find a new directory called
deps containing your dependencies. Note that these dependencies are
themselves just projects, so you can browse their source and read
their documentation.

Your Turn
	Exercise: OrganizingAProject-2

Add the dependency to your project and install it.

Back to the Transformation

So, back to our problem. We have to write the function
GithubIssues.fetch, which transforms a user name and project into a
data structure containing that project’s issues. The HTTPoison page on
GitHub gives us a clue,[22] and we write a new module,
Issues.GithubIssues:
project/1a/issues/lib/issues/github_issues.ex
	​ 	​defmodule​ Issues.GithubIssues ​do​
	​ 	 @user_agent [{​"​​User-agent"​, ​"​​Elixir dave@pragprog.com"​}]
	​ 	
	​ 	 ​def​ fetch(user, project) ​do​
	​ 	 issues_url(user, project)
	​ 	 |> HTTPoison.get(@user_agent)
	​ 	 |> handle_response
	​ 	 ​end​
	​ 	
	​ 	 ​def​ issues_url(user, project) ​do​
	​ 	 ​"​​https://api.github.com/repos/​​#{​user​}​​/​​#{​project​}​​/issues"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_response({ ​:ok​, %{​status_code:​ 200, ​body:​ body}}) ​do​
	​ 	 { ​:ok​, body }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_response({ _, %{​status_code:​ _, ​body:​ body}}) ​do​
	​ 	 { ​:error​, body }
	​ 	 ​end​
	​ 	​end​

We simply call get on the GitHub URL. (We also have to pass in a
user-agent header to keep the GitHub API happy.) What comes back is a
structure. If we have a successful response, we return a tuple
whose first element is :ok, along with the body. Otherwise we return
an :error tuple, also with the body.

There’s one more thing. The examples on the HTTPoison GitHub page
call HTTPoison.start. That’s
because HTTPoison actually runs as a separate application, outside
your main process. A lot of developers will copy this
code, calling start inline like this.

In older versions of Elixir, you could add HTTPoison to the list
of applications to start in mix.exs:
	​ 	​def​ application ​do​
	​ 	 [​applications:​ [​:logger​, ​:httpoison​]]
	​ 	​end​

This is no longer necessary. The fact that you have listed HTTPoison
as a dependency means that mix will automatically start it as an
application.
What Does Application Mean?

 OTP is the framework that manages suites
 of running applications. But just what is an
 application?

 I found the answer counterintuitive at first. Erlang programs—and, by
 extension, Elixir programs—are often structured as suites of
 cooperating subapplications. Frequently, the code that would be a
 library in another language is a subapplication in Elixir. It might
 help to think of these as components or services.

We can play with this in IEx. Use the -S mix option to run mix
before dropping into interaction mode. Because this is the first time
we’ve tried to run our code since installing the dependencies, you’ll
see them get compiled:
	​ 	$ iex -S mix
	​ 	Erlang/OTP 20 [erts-9.1] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-thr
	​ 	eads:10] [hipe] [kernel-poll:false]
	​ 	
	​ 	===> Compiling mimerl
	​ 	===> Compiling metrics
	​ 	 : :
	​ 	Generated issues app
	​ 	
	​ 	​iex(1)>​

Let’s try it out. (The output is massaged to fit the page.)
	​ 	​iex>​ Issues.GithubIssues.fetch(​"​​elixir-lang"​, ​"​​elixir"​)
	​ 	{:ok,
	​ 	[
	​ 	 {"url":"https://api.github.com/repos/elixir-lang/elixir/issues/7121",
	​ 	 "repository_url":"https://api.github.com/repos/elixir-lang/elixir",
	​ 	 "labels_url":
	​ 	 "https://api.github.com/repos/elixir-lang/elixir/issues/7121/labels{/name}",
	​ 	 "events_url":"https://api.github.com/repos/elixir-lang/elixir/issues/7121/events",
	​ 	 "html_url":"https://github.com/elixir-lang/elixir/issues/7121",
	​ 	 "id":282654795,
	​ 	 "number":7121,
	​ 	 "title":"IEx.Helpers.h duplicate output for default arguments",
	​ 	 "user":{
	​ 	 "login":"wojtekmach",
	​ 	 "id":76071,
	​ 	 "avatar_url":"https://avatars0.githubusercontent.com/u/76071?v=4",
	​ 	 "gravatar_id":"",
	​ 	 "url":"https://api.github.com/users/wojtekmach",
	​ 	 "html_url":"https://github.com/wojtekmach",
	​ 	 "followers_url":"https://api.github.com/users/wojtekmach/followers",
	​ 	

This tuple is the body of the GitHub response. The first element
is set to :ok. The second element is a string containing
the data encoded in JSON format.

Transformation: Convert Response

We’ll need a JSON library to convert the response into a data
structure. Searching hex.pm, I found the poison
library (no relation to
HTTPoison), so let’s add its dependency to our mix.exs file.[23]
project/2/issues/mix.exs
	​ 	​defp​ deps ​do​
	​ 	 [
	​ 	 { ​:httpoison​, ​"​​~> 1.0.0"​ },
	​ 	 { ​:poison​, ​"​​~> 3.1"​ },
	​]
	​ 	​end​

Run mix deps.get, and you’ll end up with poison installed.

To convert the body from a string, we call the Poison.Parser.parse!
function when we return the message from the GitHub API:
project/3/issues/lib/issues/github_issues.ex
	​ 	​def​ handle_response({ _, %{​status_code:​ status_code, ​body:​ body}}) ​do​
	​ 	 {
	​ 	 status_code |> check_for_error(),
	​ 	 body |> Poison.Parser.parse!()
	​ 	 }
	​ 	​end​
	​ 	
	​ 	​defp​ check_for_error(200), ​do​: ​:ok​
	​ 	​defp​ check_for_error(_), ​do​: ​:error​

We also have to deal with a possible error response from the fetch, so
back in the CLI module we write a function that decodes the body and
returns it on a success response; the function extracts the error from
the body and displays it otherwise.
project/3/issues/lib/issues/cli.ex
	​ 	 ​def​ process({user, project, _count}) ​do​
	​ 	 Issues.GithubIssues.fetch(user, project)
	»	 |> decode_response()
	​ 	 ​end​
	​ 	
	​ 	 ​def​ decode_response({​:ok​, body}), ​do​: body
	​ 	
	​ 	 ​def​ decode_response({​:error​, error}) ​do​
	​ 	 IO.puts ​"​​Error fetching from Github: ​​#{​error[​"​​message"​]​}​​"​
	​ 	 System.halt(2)
	​ 	 ​end​

The JSON that GitHub returns for a successful response is a list of maps, where
each map in the list contains a GitHub issue.
Dependencies That Aren't in Hex

 The dependencies you need are likely to be in hex, so mix will probably
 find them automatically. However, sometimes you’ll need to
 go further afield. The good news is that mix can also load dependencies
 from other sources. The most common is GitHub.

 HTTPoison uses a library called Hackney. In earlier versions of the book, Hackney
 wasn’t in hex.pm, so I had to add the following
 dependency to my mix.exs:

	​ 	​def​ deps ​do​
	​ 	 [{ . . . },
	​ 	 { ​:hackney​, ​github:​ ​"​​benoitc/hackney"​ }
	​]
	​ 	​end​

Application Configuration

Before we move on, there’s one little
tweak I’d like to make. The issues_url function hard-codes the GitHub
URL. Let’s make this configurable.

Remember that when we created the project using mix new, it added a
config/ directory containing config.exs. That file
stores application-level configuration.

It should start with the line
	​ 	​use​ Mix.Config

We then write configuration information for each of the applications in our
project. Here we’re configuring the Issues application, so we write
this code:
project/3a/issues/config/config.exs
	​ 	​use​ Mix.Config
	​ 	config ​:issues​, ​github_url:​ ​"​​https://api.github.com"​

Each config line adds one or more key/value pairs to the given
application’s environment. If you have multiple lines for the same
application, they accumulate, with duplicate keys in later lines
overriding values from earlier ones.

In our code, we use Application.get_env to return a value
from the environment.
project/3a/issues/lib/issues/github_issues.ex
	​ 	​# use a module attribute to fetch the value at compile time​
	​ 	@github_url Application.get_env(​:issues​, ​:github_url​)
	​ 	
	​ 	​def​ issues_url(user, project) ​do​
	​ 	 ​"​​#{​@github_url​}​​/repos/​​#{​user​}​​/​​#{​project​}​​/issues"​
	​ 	​end​

Because the application environment is commonly used in Erlang code, you’ll
find yourself using the configuration facility to configure code you import, as
well as code you write.

Sometimes you may want to vary the configuration, perhaps depending on
your application’s environment. One way is to use
the import_config function, which reads configuration from a
file. If your config.exs contains
	​ 	​use​ Mix.Config
	​ 	
	​ 	import_config ​"​​#{​Mix.env​}​​.exs"​

then Elixir will read dev.exs, test.exs, or prod.exs,
depending on your environment.

You can override the default config file name (config/config.exs) using the
--config option to elixir.

Transformation: Sort Data

Have a look at the original design in the following figure.

We’re making good progress—we’ve coded all the functions of
the top conveyor
belt. Our next transformation is to sort the data on its created_at
field, with the newest entries first. And this can just use a standard Elixir library function,
sort/2. We could create a new module for this, but it would be
pretty lonely. For now we’ll put the function in the CLI module and
keep an eye out for opportunities to move it out if we add related
functions later.

So now our CLI module contains this:
project/3b/issues/lib/issues/cli.ex
	​ 	​def​ process({user, project, _count}) ​do​
	​ 	 Issues.GithubIssues.fetch(user, project)
	​ 	 |> decode_response()
	»	 |> sort_into_descending_order()
	​ 	​end​
	​ 	
	​ 	​def​ sort_into_descending_order(list_of_issues) ​do​
	​ 	 list_of_issues
	​ 	 |> Enum.sort(​fn​ i1, i2 ->
	​ 	 i1[​"​​created_at"​] >= i2[​"​​created_at"​]
	​ 	 ​end​)
	​ 	​end​

That sort_into_descending_order function worries me a little—I get
the comparison the wrong way around about 50% of the time, so let’s
write a little CLI test.
project/3b/issues/test/cli_test.exs
	​ 	test ​"​​sort descending orders the correct way"​ ​do​
	​ 	 result = sort_into_descending_order(fake_created_at_list([​"​​c"​, ​"​​a"​, ​"​​b"​]))
	​ 	 issues = for issue <- result, ​do​: Map.get(issue, ​"​​created_at"​)
	​ 	 assert issues == ​~​w{ c b a }
	​ 	​end​
	​ 	
	​ 	​defp​ fake_created_at_list(values) ​do​
	​ 	 for value <- values,
	​ 	 ​do​: %{​"​​created_at"​ => value, ​"​​other_data"​ => ​"​​xxx"​}
	​ 	​end​

Update the import line at the top of the test:
	​ 	​import​ Issues.CLI, ​only:​ [​parse_args:​ 1,
	​ 	 ​sort_into_descending_order:​ 1]

and run it:
	​ 	​$ ​​mix​​ ​​test​
	​
	​ 	Finished in 0.00 seconds
	​ 	5 tests, 0 failures

Lookin’ fine; mighty fine.

Transformation: Take First n Items

Our next transformation is to extract the first count entries from
the list. Resisting the temptation to write the function ourselves (How would you write such a function?),
we discover the built-in
Enum.take:

	​ 	 ​def​ process({user, project, count}) ​do​
	​ 	 Issues.GithubIssues.fetch(user, project)
	​ 	 |> decode_response()
	​ 	 |> sort_into_descending_order()
	»	 |> last(count)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ last(list, count) ​do​
	​ 	 list
	​ 	 |> Enum.take(count)
	​ 	 |> Enum.reverse
	​ 	 ​end​

Your Turn
	Exercise: OrganizingAProject-3

Bring your version of this project in line with the code here.

	Exercise: OrganizingAProject-4

(Tricky) Before reading the next section, see if you can write the
code to format the data into columns, like the sample output at the
start of the chapter. This is probably the longest piece of Elixir
code you’ll have written. Try to do it without using if or cond.

Transformation: Format the Table

All that’s left from our design is to create the formatted table. The following would be a nice interface:
	​ 	 ​def​ process({user, project, count}) ​do​
	​ 	 Issues.GithubIssues.fetch(user, project)
	​ 	 |> decode_response()
	​ 	 |> sort_into_ascending_order()
	​ 	 |> last(count)
	»	 |> print_table_for_columns([​"​​number"​, ​"​​created_at"​, ​"​​title"​])
	​ 	 ​end​

We pass the formatter the list of columns to include in the table, and
it writes the table to standard output.
The formatter doesn’t add any new project- or design-related
techniques, so we’ll just show the listing.
project/4/issues/lib/issues/table_formatter.ex
	​ 	​defmodule​ Issues.TableFormatter ​do​
	​ 	
	​ 	 ​import​ Enum, ​only:​ [​each:​ 2, ​map:​ 2, ​map_join:​ 3, ​max:​ 1]
	​ 	
	​ 	 ​def​ print_table_for_columns(rows, headers) ​do​
	​ 	 ​with​ data_by_columns = split_into_columns(rows, headers),
	​ 	 column_widths = widths_of(data_by_columns),
	​ 	 format = format_for(column_widths)
	​ 	 ​do​
	​ 	 puts_one_line_in_columns(headers, format)
	​ 	 IO.puts(separator(column_widths))
	​ 	 puts_in_columns(data_by_columns, format)
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ split_into_columns(rows, headers) ​do​
	​ 	 for header <- headers ​do​
	​ 	 for row <- rows, ​do​: printable(row[header])
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ printable(str) ​when​ is_binary(str), ​do​: str
	​ 	 ​def​ printable(str), ​do​: to_string(str)
	​ 	
	​ 	 ​def​ widths_of(columns) ​do​
	​ 	 for column <- columns, ​do​: column |> map(&String.length/1) |> max
	​ 	 ​end​
	​ 	
	​ 	 ​def​ format_for(column_widths) ​do​
	​ 	 map_join(column_widths, ​"​​ | "​, ​fn​ width -> ​"​​~-​​#{​width​}​​s"​ ​end​) <> ​"​​~n"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ separator(column_widths) ​do​
	​ 	 map_join(column_widths, ​"​​-+-"​, ​fn​ width -> List.duplicate(​"​​-"​, width) ​end​)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ puts_in_columns(data_by_columns, format) ​do​
	​ 	 data_by_columns
	​ 	 |> List.zip
	​ 	 |> map(&Tuple.to_list/1)
	​ 	 |> each(&puts_one_line_in_columns(&1, format))
	​ 	 ​end​
	​ 	
	​ 	 ​def​ puts_one_line_in_columns(fields, format) ​do​
	​ 	 ​:io​.format(format, fields)
	​ 	 ​end​
	​ 	​end​

And here are the tests for it:
project/4/issues/test/table_formatter_test.exs
	​ 	​defmodule​ TableFormatterTest ​do​
	​ 	 ​use​ ExUnit.Case ​# bring in the test functionality​
	​ 	 ​import​ ExUnit.CaptureIO ​# And allow us to capture stuff sent to stdout​
	​ 	
	​ 	 alias Issues.TableFormatter, ​as:​ TF
	​ 	
	​ 	 @simple_test_data [
	​ 	 [​c1:​ ​"​​r1 c1"​, ​c2:​ ​"​​r1 c2"​, ​c3:​ ​"​​r1 c3"​, ​c4:​ ​"​​r1+++c4"​],
	​ 	 [​c1:​ ​"​​r2 c1"​, ​c2:​ ​"​​r2 c2"​, ​c3:​ ​"​​r2 c3"​, ​c4:​ ​"​​r2 c4"​],
	​ 	 [​c1:​ ​"​​r3 c1"​, ​c2:​ ​"​​r3 c2"​, ​c3:​ ​"​​r3 c3"​, ​c4:​ ​"​​r3 c4"​],
	​ 	 [​c1:​ ​"​​r4 c1"​, ​c2:​ ​"​​r4++c2"​, ​c3:​ ​"​​r4 c3"​, ​c4:​ ​"​​r4 c4"​]
	​]
	​ 	
	​ 	 @headers [​:c1​, ​:c2​, ​:c4​]
	​ 	
	​ 	 ​def​ split_with_three_columns ​do​
	​ 	 TF.split_into_columns(@simple_test_data, @headers)
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​split_into_columns"​ ​do​
	​ 	 columns = split_with_three_columns()
	​ 	 assert length(columns) == length(@headers)
	​ 	 assert List.first(columns) == [​"​​r1 c1"​, ​"​​r2 c1"​, ​"​​r3 c1"​, ​"​​r4 c1"​]
	​ 	 assert List.last(columns) == [​"​​r1+++c4"​, ​"​​r2 c4"​, ​"​​r3 c4"​, ​"​​r4 c4"​]
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​column_widths"​ ​do​
	​ 	 widths = TF.widths_of(split_with_three_columns())
	​ 	 assert widths == [5, 6, 7]
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​correct format string returned"​ ​do​
	​ 	 assert TF.format_for([9, 10, 11]) == ​"​​~-9s | ~-10s | ~-11s~n"​
	​ 	 ​end​
	​ 	
	​ 	
	​ 	 test ​"​​Output is correct"​ ​do​
	​ 	 result = capture_io ​fn​ ->
	​ 	 TF.print_table_for_columns(@simple_test_data, @headers)
	​ 	 ​end​
	​ 	 assert result == ​"""​
	​ 	​ c1 | c2 | c4​
	​ 	​ ------+--------+--------​
	​ 	​ r1 c1 | r1 c2 | r1+++c4​
	​ 	​ r2 c1 | r2 c2 | r2 c4​
	​ 	​ r3 c1 | r3 c2 | r3 c4​
	​ 	​ r4 c1 | r4++c2 | r4 c4​
	​ 	​ """​
	​ 	 ​end​
	​ 	​end​

(Although you can’t see it here, the output we compare against in the
last test contains trailing whitespace.)

Rather than clutter the process function in the CLI module with a
long module name, I chose to use import to make the print function
available without a module qualifier. This goes near the top of
cli.ex.
	​ 	​defmodule​ Issues.CLI ​do​
	​ 	
	​ 	 ​import​ Issues.TableFormatter, ​only:​ [​print_table_for_columns:​ 2]

This code also uses a great Elixir testing feature. By
importing ExUnit.CaptureIO, we get access to the capture_io
function. This runs the code passed to it but captures anything
written to standard output, returning it as a string.

Step 3: Make a Command-Line Executable

Although we can run our code by calling the run function via mix, it
isn’t friendly for other users. So let’s create something we
can run from the command line.

Mix can package our code, along with its dependencies, into a single
file that can be run on any Unix-based platform. This uses
Erlang’s escript utility, which can run precompiled programs stored
as a Zip archive. In our case, the program will be run as issues.

When escript runs a program, it looks in your mix.exs file for the
option escript. This should return a keyword list of escript
configuration settings. The most important of these is
main_module:, which must be set to the name of a module containing a
main function. It passes the command-line arguments to this main
function as a list of character lists (not binaries). As this seems to
be a command-line concern, we’ll put the main function in
Issues.CLI. Here’s the update to mix.exs:
project/4/issues/mix.exs
	​ 	​defmodule​ Issues.MixProject ​do​
	​ 	 ​use​ Mix.Project
	​ 	
	​ 	 ​def​ project ​do​
	​ 	 [
	​ 	 ​app:​ ​:issues​,
	»	 ​escript:​ escript_config(),
	​ 	 ​version:​ ​"​​0.1.0"​,
	​ 	 ​elixir:​ ​"​​~> 1.6-dev"​,
	​ 	 ​start_permanent:​ Mix.env() == ​:prod​,
	​ 	 ​deps:​ deps()
	​]
	​ 	 ​end​
	​ 	
	​ 	 ​def​ application ​do​
	​ 	 [
	​ 	 ​extra_applications:​ [​:logger​]
	​]
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ deps ​do​
	​ 	 [
	​ 	 { ​:httpoison​, ​"​​~> 1.0.0"​ },
	​ 	 { ​:poison​, ​"​​~> 3.1"​ },
	​]
	​ 	 ​end​
	»	 ​defp​ escript_config ​do​
	»	 [
	»	 ​main_module:​ Issues.CLI
	»]
	»	 ​end​
	​ 	​end​

Now let’s add a main function to our CLI. In fact, all we need to
do is rename the existing run function:
project/4/issues/lib/issues/cli.ex
	​ 	​def​ main(argv) ​do​
	​ 	 argv
	​ 	 |> parse_args
	​ 	 |> process
	​ 	​end​

Then we package our program using mix:
	​ 	​$ ​​mix​​ ​​escript.build​
	​ 	Generated escript issues

Now we can run the app locally. We can also send it to a friend—it
will run on any computer that has Erlang installed.
	​ 	​$ ​​./issues​​ ​​pragdave​​ ​​earmark​​ ​​4​
	​ 	num | created_at | title
	​ 	----+----------------------+---
	​ 	----------
	​ 	159 | 2017-09-21T10:01:24Z | Block level HTML ... messes up formatting
	​ 	161 | 2017-10-11T09:12:59Z | Be clear in README ... GFM are supported.
	​ 	162 | 2017-10-11T16:59:50Z | Working on ​#161, looking at rendering​
	​ 	171 | 2017-12-03T11:08:40Z | Fix typespecs

Step 4: Add Some Logging

Imagine a large Elixir application—dozens of processes potentially
running across a number of nodes. You’d really want a standard way to
keep track of significant events as it runs. Enter the Elixir logger.

The default mix.exs starts the logger for your application.
project/5/issues/mix.exs
	​ 	​def​ application ​do​
	​ 	 [
	​ 	 ​extra_applications:​ [​:logger​]
	​]
	​ 	​end​

The logger supports four levels of message—in increasing order of
severity they are debug, info, warn, and error. You select the
level of logging in two ways.

First, you can determine at compile time the minimum
level of logging to include. Logging below this level is not even
compiled into your code. The compile-time level is set in the
config/config.exs file:
project/5/issues/config/config.exs
	​ 	​use​ Mix.Config
	​ 	
	​ 	config ​:issues​,
	​ 	 ​github_url:​ ​"​​https://api.github.com"​
	​ 	
	»	config ​:logger​,
	»	 ​compile_time_purge_level:​ ​:info​

Next, you can choose to change the minimum log level at runtime by
calling Logger.configure. (Clearly, this cannot enable log levels
that you excluded at compile time.)

After all this configuration, it’s time to add some logging.

The basic logging functions are Logger.debug, .info, .warn, and
.error. Each function takes either a string or a zero-arity
function:
	​ 	Logger.debug ​"​​Order total ​​#{​total(order)​}​​"​
	​ 	Logger.debug ​fn​ -> ​"​​Order total ​​#{​total(order)​}​​"​ ​end​

Why have the function version? Perhaps the calculation of the order
total is expensive. In the first version, we’ll always call it to
interpolate the value into our string, even if the runtime log level
is set to ignore debug-level messages. In the function variant,
though, the total function will be invoked only if the log message
is needed.

Anyway, here’s a version of our fetch function with some logging:
project/5/issues/lib/issues/github_issues.ex
	​ 	​defmodule​ Issues.GithubIssues ​do​
	​ 	
	»	 ​require​ Logger
	​ 	
	​ 	 @user_agent [{​"​​User-agent"​, ​"​​Elixir dave@pragprog.com"​}]
	​ 	
	​ 	 ​# use a module attribute to fetch the value at compile time​
	​ 	 @github_url Application.get_env(​:issues​, ​:github_url​)
	​ 	
	​ 	
	​ 	 ​def​ fetch(user, project) ​do​
	»	 Logger.info(​"​​Fetching ​​#{​user​}​​'s project ​​#{​project​}​​"​)
	​ 	
	​ 	 issues_url(user, project)
	​ 	 |> HTTPoison.get(@user_agent)
	​ 	 |> handle_response
	​ 	 ​end​
	​ 	
	​ 	 ​def​ issues_url(user, project) ​do​
	​ 	 ​"​​#{​@github_url​}​​/repos/​​#{​user​}​​/​​#{​project​}​​/issues"​
	​ 	 ​end​

	​ 	 ​def​ handle_response({ _, %{​status_code:​ status_code, ​body:​ body}}) ​do​
	»	 Logger.info(​"​​Got response: status code=​​#{​status_code​}​​"​)
	»	 Logger.debug(​fn​ -> inspect(body) ​end​)
	​ 	 {
	​ 	 status_code |> check_for_error(),
	​ 	 body |> Poison.Parser.parse!()
	​ 	 }
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ check_for_error(200), ​do​: ​:ok​
	​ 	 ​defp​ check_for_error(_), ​do​: ​:error​
	​ 	
	​ 	​end​

Note the use of require Logger at the top of the module. If you
forget this (and I do every time), you’ll get an error when you make
the first call to Logger.

We can play with the new code in IEx:
	​ 	​iex>​ Issues.CLI.process {​"​​pragdave"​, ​"​​earmark"​, 1}
	​ 	19:53:44.207 [info] Fetching pragdave's project earmark
	​ 	19:53:44.804 [info] Got response: status code=200
	​ 	num | created_at | title
	​ 	----+----------------------+--------------
	​ 	171 | 2017-12-03T11:08:40Z | Fix typespecs
	​ 	:ok

Notice that the debug-level message is not displayed.

Step 5: Create Project Documentation

Java has Javadoc, Ruby has RDoc, and Elixir has ExDoc—a documentation
tool that describes your project, showing the modules, the things
defined in them, and any documentation you’ve written for them.

Using it is easy. First, add the ExDoc dependency to your mix.exs
file. You’ll also need to add an output formatter—I use earmark, a
pure-Elixir Markdown-to-HTML convertor.
	​ 	​defp​ deps ​do​
	​ 	 [
	​ 	 { ​:httpoison​, ​"​​~> 1.0.0"​ },
	​ 	 { ​:poison​, ​"​​~> 3.1.0"​ },
	​ 	 { ​:ex_doc​, ​"​​~> 0.18.1"​ },
	​ 	 { ​:earmark​, ​"​​~> 1.2.4"​ },
	​]
	​ 	​end​

While you’re in the mix.exs, you can add a project name and (if your project
is in GitHub) a URL. The latter allows ExDoc to provide live links to
your source code. These parameters go in the project function:
	​ 	 ​def​ project ​do​
	​ 	 [​app:​ ​:issues​,
	​ 	 ​version:​ ​"​​0.0.1"​,
	»	 ​name:​ ​"​​Issues"​,
	»	 ​source_url:​ ​"​​https://github.com/pragdave/issues"​,
	​ 	 ​deps:​ deps]
	​ 	 ​end​

Then run mix deps.get.

To generate the documentation, just run
	​ 	​$ ​​mix​​ ​​docs​
	​ 	Docs generated with success.
	​ 	Open up docs/index.html in your browser to read them.

The first time you run this task, it will install ExDoc. That involves
compiling some C code, so you’ll need a development environment on
your machine.

Open docs/index.html in your browser, then use the sidebar on the
left to search or drill down through your modules. Here’s what I see
for the start of the documentation for TableFormatter:

And that’s it. The full project is in the source download at
project/5/issues.

Coding by Transforming Data

I wanted to show you how Elixir projects are written—the tools we use
and the processes we follow. I wanted to illustrate how lots of small
functions can transform data, how specifying that transformation
acts as an outline for the program, and how easy
testing can be in Elixir.

But mostly I wanted to show how enjoyable Elixir development is, and
how thinking about the world in terms of data and its transformation
is a productive way to code.
Look at our original design:

Then have a look at the CLI.process function:
	​ 	​def​ process({user, project, count}) ​do​
	​ 	 Issues.GithubIssues.fetch(user, project)
	​ 	 |> decode_response()
	​ 	 |> sort_into_ascending_order()
	​ 	 |> last(count)
	​ 	 |> print_table_for_columns([​"​​number"​, ​"​​created_at"​, ​"​​title"​])
	​ 	​end​

This is a cool way to code.
Next we’ll dig into some of the tooling that makes using Elixir a joy.

Your Turn
	Exercise: OrganizingAProject-6

In the United States, the National Oceanic and Atmospheric Administration provides hourly XML feeds of conditions at 1,800
locations.[24] For example, the feed for a small airport close to where
I’m writing this is at
http://w1.weather.gov/xml/current_obs/KDTO.xml.

Write an application that fetches this data, parses it, and displays
it in a nice format.

(Hint: You might not have to download a library to handle XML
parsing.)

Footnotes

	[19]
	
http://developer.github.com/v3/

	[20]
	
http://elixir-lang.org/getting-started/mix-otp/introduction-to-mix.html

	[21]
	
http://elixir-lang.org/docs/stable/elixir/OptionParser.html

	[22]
	
https://github.com/edgurgel/httpoison

	[23]
	
https://github.com/devinus/poison

	[24]
	
http://w1.weather.gov/xml/current_obs

Copyright © 2018, The Pragmatic Bookshelf.

We cover:
	Debugging
	Testing
	Code exploration
	Server monitoring
	Source-code formatting

 Chapter
 14
Tooling

You’d expect that a relatively new language would come with a fairly
minimal set of tools—after all, the development team will be having
fun playing with the language.

Not so with Elixir. Tooling was important from the start, and the core
team has spent a lot of time providing a world-class environment in
which to develop code.

In this short chapter, we’ll look at some aspects of this.

This chapter is not the full list. We’ve already seen the ExDoc tool,
which creates beautiful documentation for your code. Later, when we
look at OTP applications,, we’ll
experiment with the Elixir release manager, a tool for managing
releases while your application continues to run.

For now, let’s look at testing, code-exploration, and server-monitoring tools.

Debugging with IEx

You already know that IEx is the go-to utility to play with Elixir
code. It also has a secret and dark second life as a debugger. It
isn’t fancy, but it lets you get into a running program and examine
the environment.

You enter the debugger when running Elixir code hits a breakpoint.
There are two ways of creating a breakpoint. One works by adding
calls into the code you want to debug. The other is initiated from
inside IEx. We’ll look at both using the following (buggy) code:
tooling/buggy/lib/buggy.ex
	​ 	​defmodule​ Buggy ​do​
	​ 	 ​def​ parse_header(
	​ 	 <<
	​ 	 format::integer-16,
	​ 	 tracks::integer-16,

	»	 division::integer-16
	​ 	 >>
	​) ​do​
	​ 	
	​ 	 IO.puts ​"​​format: ​​#{​format​}​​"​
	​ 	 IO.puts ​"​​tracks: ​​#{​tracks​}​​"​
	​ 	 IO.puts ​"​​division: ​​#{​decode(division)​}​​"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ decode(<< 1::1, beats::15 >>) ​do​
	​ 	 ​"​​♩ = ​​#{​beats​}​​"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ decode(<< 0::1, fps::7, beats::8 >>) ​do​
	​ 	 ​"​​#{​-fps​}​​ fps, ​​#{​beats​}​​/frame"​
	​ 	 ​end​
	​ 	​end​

This code is supposed to decode the data part of a MIDI header frame.
This contains three 16-bit fields: the format, the number of tracks,
and the time division. This last field comes in one of two formats:

The parse_header/1 function splits the overall header into the three
fields, and the decode/1 function works out which type of time
division we have.

Let’s run it, using a sample header I extracted from a MIDI file.
	​ 	$ iex -S mix
	​ 	​iex>​ header = << 0, 1, 0, 8, 0, 120 >>
	​ 	<<0, 1, 0, 8, 0, 120>>
	​ 	​iex>​ Buggy.parse_header header
	​ 	format: 1
	​ 	tracks: 8
	​ 	​**​ (FunctionClauseError) no function clause matching in Buggy.decode/1
	​ 	​iex>​

Oh no! That was totally unexpected. It looks like we’re not passing
the correct value to decode.
Let’s use the debugger to find out what’s going on.
Injecting Breakpoints Using IEx.pry

We can add a breakpoint to our source code using the pry function.
For example, to stop our code just before we call decode we could
write this:
	​ 	​def​ parse_header(
	​ 	 <<
	​ 	 format::integer-16,
	​ 	 tracks::integer-16,
	​ 	 division::integer-16
	​ 	 >>
	​) ​do​
	​ 	
	»	 ​require​ IEx; IEx.pry
	​ 	 IO.puts ​"​​format: ​​#{​format​}​​"​
	​ 	 IO.puts ​"​​tracks: ​​#{​tracks​}​​"​
	​ 	 IO.puts ​"​​division: ​​#{​decode(division)​}​​"​
	​ 	​end​

(We need the require because pry is a macro.)

Let’s try the code now:
	​ 	$ iex -S mix
	​ 	​iex>​ Buggy.parse_header << 0, 1, 0, 8, 0, 120 >>
	​ 	Break reached: Buggy.parse_header/1 (lib/buggy.ex:11)
	​ 	
	​ 	 9:
	»	​ ​10: require IEx; IEx.pry
	​ 	​ ​11: IO.puts "format: #{format}"
	​ 	
	​ 	pry> binding
	​ 	[division: 120, format: 1, tracks: 8]
	​ 	​iex>​ continue()
	​ 	format: 1
	​ 	tracks: 8
	​ 	​**​ (FunctionClauseError) no function clause matching in Buggy.decode/1

We reached the breakpoint, and IEx entered pry mode. It showed us
the function we were in as well as the source lines surrounding the
breakpoint.

At this point, IEx is running in the context of this function, so a
call to binding shows the local variables. The value in the division function is
120, but that isn’t matching either of the parameters to decode.

Aha! decode is expecting a binary, not an integer. Let’s fix our
code:
	​ 	​def​ parse_header(
	​ 	 <<
	​ 	 format::integer-16,
	​ 	 tracks::integer-16,
	»	 division::bits-16
	​ 	 >>
	​) ​do​
	​ 	...

The pry call is still in there, so let’s recompile and try again:
	​ 	​iex>​ r Buggy
	​ 	{:reloaded, Buggy, [Buggy]}
	​ 	​iex>​ Buggy.parse_header << 0, 1, 0, 8, 0, 120 >>
	​ 	Break reached: Buggy.parse_header/1 (lib/buggy.ex:12)
	​ 	
	​ 	 10:) do
	​ 	 11:
	​ 	 12: require IEx; IEx.pry
	​ 	 13: IO.puts "format: #{format}"
	​ 	 14: IO.puts "tracks: #{tracks}"
	​ 	
	​ 	pry> binding
	​ 	[division: <<0, 120>>, format: 1, tracks: 8]
	​ 	pry> continue
	​ 	format: 1
	​ 	tracks: 8
	​ 	division: 0 fps, 120/frame
	​ 	:ok

Now the division is a binary, and when we continue the code runs
and outputs the header fields. Except…it’s parsing the time
division as if it were the SMPTE version, and not the beats/quarter
note version.
Setting Breakpoints with Break

The second way to create a breakpoint doesn’t involve any code
changes. Instead, you can use the break! command inside IEx to add a
breakpoint on any public function. Let’s remove the call to pry and
run the code again. Inside IEx we’ll add a
breakpoint on the decode function:
	​ 	​iex>​ ​require​ IEx
	​ 	IEx
	​ 	​iex>​ break! Buggy.decode/1
	​ 	1
	​ 	​iex>​ breaks
	​ 	
	​ 	 ID Module.function/arity Pending stops
	​ 	---- ----------------------- ---------------
	​ 	 1 Buggy.decode/1 1
	​ 	
	​ 	​iex>​ Buggy.parse_header << 0, 1, 0, 8, 0, 120 >>
	​ 	format: 1
	​ 	tracks: 8
	​ 	Break reached: Buggy.decode/1 (lib/buggy.ex:21)
	​ 	
	​ 	 19: end
	​ 	 20:
	​ 	 21: def decode(<< 0::1, fps::7, beats::8 >>) do
	​ 	 22: "#{-fps} fps, #{beats}/frame"
	​ 	 23: end
	​ 	
	​ 	pry> binding
	​ 	[division: <<0, 120>>, format: 1, tracks: 8]

We hit the breakpoint, and we are indeed matching the wrong version of
the decode function when we pass it 0000000001111000. Ah, that’s
because I’m discriminating based on the value of the top bit, and I
got it the wrong way around: the SMPTE version should be
	​ 	​def​ decode(<< 1::1, fps::7, beats::8 >>) ​do​

and the beats version should be
	​ 	​def​ decode(<< 0::1, beats::15 >>) ​do​

There’s lots more functionality in the debugger. You can start by
getting help for IEx.break/4.
Does This Seem a Little Artificial?

I have a confession to make. The only time I use the Elixir
breakpoint facility is when I work on this section of the book. If I
have to add code to the source to break in the middle of a function,
then I can just raise an exception there instead to get the
information I need. And the fact that I can only break at public
functions from inside IEx means that I can’t get the kind of
granularity I need to diagnose issues, because 90% of my functions are
private.

However, I’m an old curmudgeon—my favorite editor is a card punch.
Don’t let my lack of enthusiasm stop you from trying the debugger.

Testing

We already used the ExUnit framework to write tests for our Issues
tracker app. But that chapter only scratched the surface of Elixir
testing. Let’s dig deeper.
Testing the Comments

When I document my functions, I like to include examples of the
function being used—comments saying things such as, “Feed it these
arguments, and you’ll get this result.” In the Elixir world, a common
way to do this is to show the function being used in an IEx session.

Let’s look at an example from our Issues app. The TableFormatter
formatter module defines a number of self-contained functions that we
can document.
project/5/issues/lib/issues/table_formatter.ex
	​ 	​defmodule​ Issues.TableFormatter ​do​
	​ 	
	​ 	 ​import​ Enum, ​only:​ [​each:​ 2, ​map:​ 2, ​map_join:​ 3, ​max:​ 1]
	​ 	
	​ 	 @doc ​"​​"​​"​

	​ 	Takes a list of row data, where each row is a Map, ​and​ a list of
	​ 	headers. Prints a table to STDOUT of the data from each row
	​ 	identified by each header. That is, each header identifies a column,
	​ 	​and​ those columns are extracted ​and​ printed from the rows.
	​ 	We calculate the width of each column to fit the longest element
	​ 	​in​ that column.
	​ 	​"""​
	​ 	​def print_table_for_columns(rows, headers) do​
	​ 	​ with data_by_columns = split_into_columns(rows, headers),​
	​ 	​ column_widths = widths_of(data_by_columns),​
	​ 	​ format = format_for(column_widths)​
	​ 	​ do​
	​ 	​ puts_one_line_in_columns(headers, format)​
	​ 	​ IO.puts(separator(column_widths))​
	​ 	​ puts_in_columns(data_by_columns, format)​
	​ 	​ end​
	​ 	​end​
	​ 	
	​ 	​@doc """​
	​ 	Given a list of rows, where each row contains a keyed list
	​ 	of columns, return a list containing lists of the data ​in​
	​ 	each column. The ​`​headers​`​ parameter contains the
	​ 	list of columns to extract
	​ 	
	​ 	​## Example​
	​ 	
	​ 	 iex> list = [Enum.into([{​"​​a"​, ​"​​1"​},{​"​​b"​, ​"​​2"​},{​"​​c"​, ​"​​3"​}], %{}),
	​ 	 ...> Enum.into([{​"​​a"​, ​"​​4"​},{​"​​b"​, ​"​​5"​},{​"​​c"​, ​"​​6"​}], %{})]
	​ 	 iex> Issues.TableFormatter.split_into_columns(list, [​"​​a"​, ​"​​b"​, ​"​​c"​])
	​ 	 [[​"​​1"​, ​"​​4"​], [​"​​2"​, ​"​​5"​], [​"​​3"​, ​"​​6"​]]
	​ 	
	​ 	​"""​
	​ 	​def split_into_columns(rows, headers) do​
	​ 	​ for header <- headers do​
	​ 	​ for row <- rows, do: printable(row[header])​
	​ 	​ end​
	​ 	​end​
	​ 	
	​ 	​@doc """​
	​ 	Return a binary (string) version of our parameter.
	​ 	​## Examples​
	​ 	 iex> Issues.TableFormatter.printable(​"​​a"​)
	​ 	 ​"​​a"​
	​ 	 iex> Issues.TableFormatter.printable(99)
	​ 	 ​"​​99"​
	​ 	​"""​
	​ 	​def printable(str) when is_binary(str), do: str​
	​ 	​def printable(str), do: to_string(str)​
	​ 	
	​ 	​@doc """​
	​ 	Given a list containing sublists, where each sublist contains the data for
	​ 	a column, return a list containing the maximum width of each column.

	​ 	 ​## Example​
	​ 	 iex> data = [[​"​​cat"​, ​"​​wombat"​, ​"​​elk"​], [​"​​mongoose"​, ​"​​ant"​, ​"​​gnu"​]]
	​ 	 iex> Issues.TableFormatter.widths_of(data)
	​ 	 [6, 8]
	​ 	 ​"""​
	​ 	​ def widths_of(columns) do​
	​ 	​ for column <- columns, do: column |> map(&String.length/1) |> max​
	​ 	​ end​
	​ 	
	​ 	​ @doc """​
	​ 	 Return a format string that hard-codes the widths of a set of columns.
	​ 	 We put ​`​​"​​ | "​​`​ between each column.
	​ 	
	​ 	 ​## Example​
	​ 	 iex> widths = [5,6,99]
	​ 	 iex> Issues.TableFormatter.format_for(widths)
	​ 	 ​"​​~-5s | ~-6s | ~-99s~n"​
	​ 	 ​"""​
	​ 	​ def format_for(column_widths) do​
	​ 	​ map_join(column_widths, " | ", fn width -> "~-#{width}s" end) <> "~n"​
	​ 	​ end​
	​ 	
	​ 	​ @doc """​
	​ 	 Generate the line that goes below the column headings. It is a string of
	​ 	 hyphens, ​with​ + signs where the vertical bar between the columns goes.
	​ 	
	​ 	 ​## Example​
	​ 	 iex> widths = [5,6,9]
	​ 	 iex> Issues.TableFormatter.separator(widths)
	​ 	 ​"​​------+--------+----------"​
	​ 	 ​"""​
	​ 	​ def separator(column_widths) do​
	​ 	​ map_join(column_widths, "-+-", fn width -> List.duplicate("-", width) end)​
	​ 	​ end​
	​ 	
	​ 	​ @doc """​
	​ 	 Given a list containing rows of data, a list containing the header selectors,
	​ 	 ​and​ a format string, write the extracted data under control of the format string.
	​ 	 ​"​​"​​"​
	​ 	​ def puts_in_columns(data_by_columns, format) do​
	​ 	​ data_by_columns​
	​ 	​ |> List.zip​
	​ 	​ |> map(&Tuple.to_list/1)​
	​ 	​ |> each(&puts_one_line_in_columns(&1, format))​
	​ 	​ end​
	​ 	
	​ 	​ def puts_one_line_in_columns(fields, format) do​
	​ 	​ :io.format(format, fields)​
	​ 	​ end​
	​ 	​end​

Note how some of the documentation contains sample IEx sessions. I
like doing this. It helps people who come along later understand how
to use my code. But, as importantly, it lets me understand what my
code will feel like to use. I typically write these sample sessions
before I start on the code, changing stuff around until the API feels
right.

But the problem with comments is that they just don’t get maintained.
The code changes, the comment gets stale, and it becomes useless.
Fortunately, ExUnit has doctest, a tool that extracts the iex
sessions from your code’s @doc strings, runs it, and checks that the
output agrees with the comment.

To invoke it, simply add one or more
	​ 	doctest ModuleName

lines to your test files. You can add them to existing test files for
a module (such as table_formatter_test.exs) or create a new test
file just for them. That’s what we’ll do here. Let’s create a new
test file, test/doc_test.exs, containing this:
project/5/issues/test/doc_test.exs
	​ 	​defmodule​ DocTest ​do​
	​ 	 ​use​ ExUnit.Case
	»	 doctest Issues.TableFormatter
	​ 	​end​

We can now run it:
	​ 	​$ ​​mix​​ ​​test​​ ​​test/doc_test.exs​
	​
	​ 	Finished in 0.00 seconds
	​ 	5 doctests, 0 failures

And, of course, these tests are integrated into the overall test
suite:
	​ 	​$ ​​mix​​ ​​test​
	​
	​ 	
	​ 	Finished in 0.1 seconds
	​ 	5 doctests, 9 tests, 0 failures

Let’s force an error to see what happens:
	​ 	@doc ​"""​
	​ 	​Return a binary (string) version of our parameter.​
	​ 	
	​ 	​## Examples​
	​ 	
	​ 	​ iex> Issues.TableFormatter.printable("a")​
	​ 	​ "a"​
	​ 	​ iex> Issues.TableFormatter.printable(99)​
	​ 	​ "99.0"​
	​ 	​"""​
	​ 	
	​ 	​def​ printable(str) ​when​ is_binary(str), ​do​: str
	​ 	​def​ printable(str), ​do​: to_string(str)

And run the tests again:
	​ 	​$ ​​ ​​mix​​ ​​test​​ ​​test/doc_test.exs​
	​
	​ 	 1) test doc at Issues.TableFormatter.printable/1 (3) (DocTest)
	​ 	 Doctest failed
	​ 	 code: " Issues.TableFormatter.printable(99) should equal \"99.0\""
	​ 	 lhs: "\"99\""
	​ 	 stacktrace:
	​ 	 lib/issues/table_formatter.ex:52: Issues.TableFormatter (module)
	​ 	6 tests, 1 failures

Structuring Tests

You’ll often find yourself wanting to group your tests at a finer
level than per module. For example, you might have multiple tests for
a particular function, or multiple functions that work on the same
test data. ExUnit has you covered.

Let’s test this simple module:
tooling/pbt/lib/stats.ex
	​ 	​defmodule​ Stats ​do​
	​ 	 ​def​ sum(vals), ​do​: vals |> Enum.reduce(0, &+/2)
	​ 	 ​def​ count(vals), ​do​: vals |> length
	​ 	 ​def​ average(vals), ​do​: sum(vals) / count(vals)
	​ 	​end​

Our tests might look something like this:
tooling/pbt/test/describe.exs
	​ 	​defmodule​ TestStats ​do​
	​ 	 ​use​ ExUnit.Case
	​ 	
	​ 	 test ​"​​calculates sum"​ ​do​
	​ 	 list = [1, 3, 5, 7, 9]
	​ 	 assert Stats.sum(list) == 25
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​calculates count"​ ​do​
	​ 	 list = [1, 3, 5, 7, 9]
	​ 	 assert Stats.count(list) == 5
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​calculates average"​ ​do​
	​ 	 list = [1, 3, 5, 7, 9]
	​ 	 assert Stats.average(list) == 5
	​ 	 ​end​
	​ 	​end​

There are a couple of issues here. First, these tests only pass in a
list of integers. Presumably we’d want to test with floats, too. So
let’s use the describe feature of ExUnit to document that these are
the integer versions of the tests:
tooling/pbt/test/describe.exs
	​ 	​defmodule​ TestStats0 ​do​
	​ 	 ​use​ ExUnit.Case
	​ 	
	​ 	 describe ​"​​Stats on lists of ints"​ ​do​
	​ 	 test ​"​​calculates sum"​ ​do​
	​ 	 list = [1, 3, 5, 7, 9]
	​ 	 assert Stats.sum(list) == 25
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​calculates count"​ ​do​
	​ 	 list = [1, 3, 5, 7, 9]
	​ 	 assert Stats.count(list) == 5
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​calculates average"​ ​do​
	​ 	 list = [1, 3, 5, 7, 9]
	​ 	 assert Stats.average(list) == 5
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

If any of these fail, the message would include the
description and test name:
	​ 	test Stats on lists of ints calculates sum (TestStats0)
	​ 	 test/describe.exs:12
	​ 	 Assertion with == failed
	​ 	 ...

A second issue with our tests is that we’re duplicating the test data
in each function. In this particular case this is arguably not a major
problem. There are times, however, where this data is complicated to
create. So let’s use the setup feature to move this code into a
single place. While we’re at it, we’ll also put the expected answers
into the setup. This means that if we decide to change the test data
in the future, we’ll find it all in one place.
tooling/pbt/test/describe.exs
	​ 	​defmodule​ TestStats1 ​do​
	​ 	 ​use​ ExUnit.Case
	​ 	
	​ 	 describe ​"​​Stats on lists of ints"​ ​do​
	​ 	
	​ 	 setup ​do​
	​ 	 [​list:​ [1, 3, 5, 7, 9, 11],
	​ 	 ​sum:​ 36,
	​ 	 ​count:​ 6
	​]
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​calculates sum"​, fixture ​do​
	​ 	 assert Stats.sum(fixture.list) == fixture.sum
	​ 	 ​end​

	​ 	 test ​"​​calculates count"​, fixture ​do​
	​ 	 assert Stats.count(fixture.list) == fixture.count
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​calculates average"​, fixture ​do​
	​ 	 assert Stats.average(fixture.list) == fixture.sum / fixture.count
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

The setup function is invoked automatically before each test is run.
(There’s also a setup_all function that is invoked just once for the
test run.) The setup function returns a keyword list of named test
data. In testing circles, this data, which is used to drive tests, is
called a fixture.

This data is passed to our tests as a second parameter, following the
test name. In my tests, I’ve called this parameter fixture. I then
access the individual fields using the fixture.list syntax.

In the code here I passed a block to setup. You can also pass the
name of a function (as an atom).

Inside the setup code you can define callbacks using on_exit. These
will be invoked at the end of the test. They can be used to undo
changes made by the test.

There’s a lot of depth in ExUnit. I’d recommend spending a little time
in the ExUnit
docs.[25]

Property-Based Testing

When you use assertions, you work out ahead of time the result you
expect your function to return. This is good, but it also has some
limitations. In particular, any assumptions you made while writing the
original code are likely to find their way into the tests, too.

A different approach is to consider the overall properties of the
function you’re testing. For example, if your function converts a
string to uppercase, then you can predict that, whatever string you
feed it,
	the length of the output will be the same as the length of the
input, and
	any lowercase characters in the input will have been replaced by
their uppercase counterpart.

These are intrinsic properties of the function. And we can test them
statistically by simply injecting a (large) number of different
strings and verifying the results honor the properties. If all
the tests pass, we haven’t proved the function is correct
(although we have a lot of confidence it should be). But, more
importantly, if any of the tests fail, we’ve found a boundary
condition our function doesn’t handle. And property-based testing
is surprisingly good at finding these errors.
Let’s look again at our previous example:
tooling/pbt/lib/stats.ex
	​ 	​defmodule​ Stats ​do​
	​ 	 ​def​ sum(vals), ​do​: vals |> Enum.reduce(0, &+/2)
	​ 	 ​def​ count(vals), ​do​: vals |> length
	​ 	 ​def​ average(vals), ​do​: sum(vals) / count(vals)
	​ 	​end​

Here are some simple properties we could test:
	The sum of a list containing a single value should be that value.
	The count function should never return a negative number.
	If we multiply the results returned by count and average, it
should equal the result returned by sum (allowing for a little
rounding).

To test the properties, the framework needs to generate large numbers
of sample values of the correct type. For the first test, for example,
we need a bunch of numeric values.

That’s where the property-testing libraries come in. There are a
number of property-based testing libraries for Elixir (including one I
wrote, called Quixir). But here we’ll be using a library called
StreamData.[26]
As José Valim is one of the authors, I
suspect it may well make its way into core Elixir one day.

I could write something like this:
	​ 	check all number <- real() ​do​
	​ 	 ​# ...​
	​ 	​end​

There are two pieces of magic here. The first is the real function.
This is a generator, which will return real numbers. This is invoked
by check all. You might think from its name that this will try all
real numbers (which would take some time), but it instead just
iterates a given number of times (100 by default).

Let’s code this. First, add StreamData to our list of dependencies:
tooling/pbt/mix.exs
	​ 	​defp​ deps ​do​
	​ 	 [
	​ 	 { ​:stream_data​, ​"​​>= 0.0.0"​ },
	​]
	​ 	​end​

Now we can write the property tests. Here’s the first:
tooling/pbt/test/stats_property_test.exs
	​ 	​defmodule​ StatsPropertyTest ​do​
	​ 	 ​use​ ExUnit.Case
	​ 	 ​use​ ExUnitProperties
	​ 	
	​ 	 describe ​"​​Stats on lists of ints"​ ​do​
	​ 	 property ​"​​single element lists are their own sum"​ ​do​
	​ 	 check all number <- integer() ​do​
	​ 	 assert Stats.sum([number]) == number
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

You’ll see this looks a lot like a regular test. We have to include
use ExCheck at the top to include the property test framework.

The actual test is in the property block. It has the check all block
we saw earlier. Inside this we have a test: assert Stats.sum([number]) ==
number.

Let’s run it:
	​ 	​$ ​​mix​​ ​​test​​ ​​test/stats_property_test.exs​
	​ 	.
	​
	​ 	
	​ 	Finished in 0.1 seconds
	​ 	1 property, 0 failures

Let’s break the test, just to see what a failure looks like:
	​ 	check all number <- real ​do​
	​ 	 assert Stats.sum([number]) == number + 1
	​ 	​end​

	​ 	1) property Stats on lists of ints single-element lists are
	​ 	 their own sum (StatsPropertyTest)
	​ 	 test/stats_property_test.exs:17
	​ 	 Failed with generated values (after 0 successful run(s)):
	​ 	
	​ 	 number <- integer()
	​ 	​ #=> 0​
	​ 	
	​ 	 Assertion with == failed
	​ 	 code: assert Stats.sum([number]) == number + 1
	​ 	 left: 0
	​ 	 right: 1

We failed, and the value of number at the time was zero.

Let’s fix the test, and add tests for the other two properties.
tooling/pbt/test/stats_property_test.exs
	​ 	property ​"​​count not negative"​ ​do​
	​ 	 check all l <- list_of(integer()) ​do​
	​ 	 assert Stats.count(l) >= 0
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	property ​"​​single element lists are their own sum"​ ​do​
	​ 	 check all number <- integer() ​do​
	​ 	 assert Stats.sum([number]) == number
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	property ​"​​sum equals average times count"​ ​do​
	​ 	 check all l <- list_of(integer()) ​do​
	​ 	 assert_in_delta(
	​ 	 Stats.sum(l),
	​ 	 Stats.count(l)*Stats.average(l),
	​ 	 1.0e-6
	​)
	​ 	 ​end​
	​ 	​end​

The two new tests use a different generator: list(int) generates a
number of lists, each containing zero or more ints.

Running this code is surprising—it fails!
	​ 	​$ ​​mix​​ ​​test​​ ​​test/stats_property_test.exs​
	​
	​ 	
	​ 	 1) property Stats on lists of ints sum equals average times
	​ 	 count (StatsPropertyTest)
	​ 	 test/stats_property_test.exs:27
	​ 	 ** (ExUnitProperties.Error) failed with generated values
	​ 	 (after 40 successful run(s)):
	​ 	
	»	 l <- list_of(integer())
	»	​ #=> []​
	​ 	
	»	 ** (ArithmeticError) bad argument in arithmetic expression
	​ 	 code: check all l <- list_of(integer()) do
	​ 	 . . .
	​ 	Finished in 0.1 seconds
	​ 	5 properties, 1 failure
	​ 	
	​ 	Randomized with seed 947482

The exception shows we failed with an Arithmeticerror, and the value
that caused the failure was l = [], the empty list. That’s because
we were trying to find the average of an empty list. This means our
code will be dividing the sum (0) by the list size (0), and dividing
by zero is an error.

This is cool. The property tests explored the range of possible input
values, and found one that causes our code to fail.

Arguably, this is a bug in our Stats module. But let’s treat it
instead as a boundary condition that the tests should avoid. We can do
this in two ways.

First, we can tell the property test to skip generated values that
fail to meet a condition. We do this with the nonempty function:
tooling/pbt/test/stats_property_test.exs
	​ 	property ​"​​sum equals average times count (nonempty)"​ ​do​
	​ 	 check all l <- list_of(integer()) |> nonempty ​do​
	​ 	 assert_in_delta(
	​ 	 Stats.sum(l),
	​ 	 Stats.count(l)*Stats.average(l),
	​ 	 1.0e-6
	​)
	​ 	 ​end​
	​ 	​end​

Now, whenever the generator returns an empty list, the nonempty
function will filter it out. This is just one example of StreamData
filters. A number are predefined, and you can also write your own.

A second approach is to prevent the generator from creating empty
lists in the first place. This uses the min_length option:
tooling/pbt/test/stats_property_test.exs
	​ 	property ​"​​sum equals average times count (min_length)"​ ​do​
	​ 	 check all l <- list_of(integer(), ​min_length:​ 1) ​do​
	​ 	 assert_in_delta(
	​ 	 Stats.sum(l),
	​ 	 Stats.count(l)*Stats.average(l),
	​ 	 1.0e-6
	​)
	​ 	 ​end​
	​ 	​end​

Digging Deeper

In case you’re interested in exploring property-based testing, the
documentation for ExUnitProperties has some examples and
references.[27]

The StreamData module is designed to be used on its own—it’s not just
for testing. If you find yourself needing to generate streams of
values that meet some criteria, it might be your library of choice.

Test Coverage

Some people believe that if there are any lines of application code that
haven’t been exercised by a test, the code is incomplete. (I’m not one
of them.) These folks use test coverage tools to check for untested
code.

Here we’ll use excoveralls to see where to add tests for the Issues app.[28] (Another good coverage tool is coverex.)[29]

All of the work to add the tool to our project takes place in mix.exs.

First, we add the dependency:
tooling/issues/mix.exs
	​ 	​defp​ deps ​do​
	​ 	 [
	​ 	 {​:httpoison​, ​"​​~> 0.9"​},
	​ 	 {​:poison​, ​"​​~> 2.2"​},
	​ 	 {​:ex_doc​, ​"​​~> 0.12"​},
	​ 	 {​:earmark​, ​"​​~> 1.0"​, ​override:​ true},
	»	 {​:excoveralls​, ​"​​~> 0.5.5"​, ​only:​ ​:test​}
	​]
	​ 	​end​

Then, in the project section, we integrate the various coveralls
commands into mix, and force them to run in the test environment:
tooling/issues/mix.exs
	​ 	​def​ project ​do​
	​ 	 [
	​ 	 ​app:​ ​:issues​,
	​ 	 ​version:​ ​"​​0.0.1"​,
	​ 	 ​name:​ ​"​​Issues"​,
	​ 	 ​source_url:​ ​"​​https://github.com/pragdave/issues"​,
	​ 	 ​escript:​ escript_config(),
	​ 	 ​build_embedded:​ Mix.env == ​:prod​,
	​ 	 ​start_permanent:​ Mix.env == ​:prod​,
	»	 ​test_coverage:​ [​tool:​ ExCoveralls],
	»	 ​preferred_cli_env:​ [
	»	 ​"​​coveralls"​: ​:test​,
	»	 ​"​​coveralls.detail"​: ​:test​,
	»	 ​"​​coveralls.post"​: ​:test​,
	»	 ​"​​coveralls.html"​: ​:test​
	»],
	​ 	 ​deps:​ deps()
	​]
	​ 	​end​

After a quick mix deps.get, you can run your first coverage report:
	​ 	​$ ​​mix​​ ​​coveralls​
	​
	​ 	
	​ 	Finished in 0.1 seconds
	​ 	5 doctests, 8 tests, 0 failures
	​ 	
	​ 	Randomized with seed 5441
	​ 	----------------
	​ 	COV FILE LINES RELEVANT MISSED
	​ 	 0.0% lib/issues.ex 5 0 0
	​ 	 46.7% lib/issues/cli.ex 73 15 8
	​ 	 0.0% lib/issues/github_issues.ex 46 6 6
	​ 	100.0% lib/issues/table_formatter.ex 109 15 0
	​ 	[TOTAL] 61.1%
	​ 	----------------

It runs the tests first, and then reports on the files in our
application.

We have no tests for issues.ex. As this is basically a boilerplate
no-op, that’s not surprising. We wrote some tests for cli.ex, but
could do better. The github_issues.ex file is not being tested. But,
saving the best for last, we have 100% coverage in the table formatter
(because we used it as an example of doc testing).

excoveralls can produce detailed reports to the console (mix
coveralls.detail) and as an HTML file (mix coveralls.html). The
latter generates the file cover/excoveralls.html, as shown in the following figure.

Finally, excoveralls works with a number of continuous integration
systems. See its GitHub page for details.

Code Dependencies

The mix tool is smart when it compiles your project. It analyzes the
dependencies between your source files, and only recompiles a file
when it has changed or a file it depends on has changed. As a
developer, you can also access this dependency information, gaining
valuable insights into your code. You do this with the mix xref
commands.

	mix xref unreachable
	
List functions that are unknown at the time they are called.

	mix xref warnings
	
List warnings associated with dependencies (for example, calls to
unknown functions).

	mix xref callers Mod | Mod.func | Mod.func/arity
	
List the callers to a module or function:

		​ 	$ mix xref callers Logger
	​ 	mix xref callers Logger
	​ 	web/controllers/page_controller.ex:1: Logger.bare_log/3
	​ 	web/controllers/page_controller.ex:1: Logger.debug/1
	​ 	lib/webapp/endpoint.ex:1: Logger.bare_log/3
	​ 	lib/webapp/endpoint.ex:1: Logger.error/1

	mix xref graph
	
Show the dependency tree for the application:

		​ 	$ mix xref graph
	​ 	lib/webapp.ex
	​ 	├── lib/webapp/endpoint.ex
	​ 	│ ├── lib/webapp.ex (compile)
	​ 	│ └── web/router.ex (compile)
	​ 	│ ├── lib/webapp.ex (compile)
	​ 	│ └── web/web.ex (compile)
	​ 	└── lib/webapp/repo.ex

You can produce a circles-and-arrows picture of dependencies using
dot.[30]
	​ 	$ mix xref graph --format dot
	​ 	$ dot -Grankdir=LR -Epenwidth=2 -Ecolor=​#a0a0a0 \​
	​ 	 -Tpng xref_graph.dot -o xref_graph.png

This produces something like this:

Server Monitoring

As you might expect from a platform that has been running demanding
and critical applications for 20 years, Erlang has great server-monitoring tools.

One of the easiest to use is already baked in. Inside IEx, run
	​ 	​iex>​ ​:observer​.start()

Use this to get insight into…
	
Basic system information:

	
Dynamic charts of load:

	
Information and contents of Erlang ETS tables:

	
Running processes:

	
Running applications:

	
Memory allocation:

	
And tracing of function calls, messages, and events:

For application-level monitoring, you might want to look at
Elixometer from Pinterest.[31]

Source-Code Formatting

This is the section where I get into trouble.

The Elixir core team wanted to standardize the format of source code
that was submitted to them for inclusion in the various Elixir core
projects. Rather than beat people up and reject pull requests, they
made it easy for submitters by including a source-code formatting tool
in Elixir 1.6. This tool is pretty smart—it knows not just the syntax
of Elixir but also the parse tree, meaning that it will often move
things between lines, drop commas, add parentheses, and so on.

This magic is done using the mix format command. It can format single
files, directory trees, and whole projects (see mix help format for
information). This formatting replaces the files it touches, so you
might want to make sure you’re checked in before running it.

Let’s have a look at some before-and-after formatting:

If we feed it code that looks like a dog’s dinner:
	​ 	​def​ no_vowels string
	​ 	 ​do​
	​ 	 string |>
	​ 	 String.replace(​~r/[aeiou]/​, ​"​​*"​)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ separator(column_widths) ​do​
	​ 	 map_join(column_widths, ​"​​-+-"​, ​fn​ width ->
	​ 	 List.duplicate(​"​​-"​, width)
	​ 	​end​)
	​ 	 ​end​

the formatter tidies it nicely:
	​ 	​def​ no_vowels(string) ​do​
	​ 	 string
	​ 	 |> String.replace(​~r/[aeiou]/​, ​"​​*"​)
	​ 	​end​
	​ 	
	​ 	​def​ separator(column_widths) ​do​
	​ 	 map_join(column_widths, ​"​​-+-"​, ​fn​ width ->
	​ 	 List.duplicate(​"​​-"​, width)
	​ 	 ​end​)
	​ 	​end​

It is also pretty smart about multiline constructs:
	​ 	 @names [
	​ 	Doc, Grumpy, Happy,
	​ 	 Sleepy, Bashful, Sneezy,
	​ 	 Dopey
	​]

This produces:
	​ 	@names [
	​ 	 Doc,
	​ 	 Grumpy,
	​ 	 Happy,
	​ 	 Sleepy,
	​ 	 Bashful,
	​ 	 Sneezy,
	​ 	 Dopey
	​]

Here, because the original split onto a new line, the formatted result
was normalized into one element per line.

There’s lots to like about the formatter. But I personally don’t use
it, because it destroys some elements of layout I think are important.

For example, I like to line things up vertically. I find this much, much
easier to read and to maintain. Most editors have support for this:
	​ 	options = %{
	​ 	 ​style:​ ​"​​light"​,
	​ 	 ​background:​ ​"​​green"​
	​ 	}

and:
	​ 	name = ​"​​Alphabet"​
	​ 	url = ​"​​https://abc.xyz"​
	​ 	entry_count = 10

Unfortunately, the Elixir formatter goes to some trouble to remove
that extra space, producing:
	​ 	options = %{
	​ 	 ​style:​ ​"​​light"​,
	​ 	 ​background:​ ​"​​green"​
	​ 	}
	​ 	
	​ 	name = ​"​​Alphabet"​
	​ 	url = ​"​​https://abc.xyz"​
	​ 	entry_count = 10

Then there’s the contentious trailing comma.

When I list things out, I put a comma after each
item and put each item on a new line. This makes
it easier to move things around, add new items, sort the list,
and so on. Each line is just like the other: the first and last lines
are not special.
	​ 	plugins = [
	​ 	 Format,
	​ 	 Index,
	​ 	 Print,
	​]

The formatter thinks this is silly, and removes the comma.
	​ 	plugins = [
	​ 	 Format,
	​ 	 Index,
	​ 	 Print
	​]

And finally, there’s the trailing comment. I rarely use comments
inside a block of code. When I do, and if it is short, I add it to the
end of the line:
	​ 	​def​ format(template, ​# a binary in eex format​
	​ 	 bindings, ​# the bindings to use​
	​ 	 options) ​do​ ​# :verbose | :narrow​
	​ 	 ​# ...​
	​ 	​end​

I know this is a bad example, but even so the formatter makes some
unfortunate decisions:
	​ 	​# a binary in eex format​
	​ 	​def​ format(
	​ 	 template,
	​ 	 ​# the bindings to use​
	​ 	 bindings,
	​ 	 ​# :verbose | :narrow​
	​ 	 options
	​) ​do​
	​ 	 ​# ...​
	​ 	​end​

The upshot? If you like what it does, or if you’re submitting code to
a project that requires it, use the formatter.

Inevitably, There’s More

Elixir is lucky when it comes to tooling, both because it inherits a
wealth of tools from Erlang and because the Elixir community values great tools and develops them to fill any gaps. Keep up with the tools people use, and you’ll find yourself developing faster, and with more confidence.

Now let’s look at concurrent programming, a key strength of Elixir.

Footnotes

	[25]
	
http://elixir-lang.org/docs/stable/ex_unit/ExUnit.html

	[26]
	
https://github.com/whatyouhide/stream_data

	[27]
	
https://hexdocs.pm/stream_data/ExUnitProperties.html

	[28]
	
https://github.com/parroty/excoveralls

	[29]
	
https://github.com/alfert/coverex

	[30]
	
http://www.graphviz.org/

	[31]
	
https://github.com/pinterest/elixometer

Copyright © 2018, The Pragmatic Bookshelf.

Part 2
Concurrent Programming

 You want to write concurrent programs. That’s probably why
 you’re reading this book.

 Let’s look at Elixir’s actor-based concurrency model.
 Then we’ll dig into OTP, the Erlang management architecture
 that helps you create applications that are highly scalable
 and very reliable.

 Chapter
 15
Working with Multiple Processes

One of Elixir’s key features is the idea of packaging code into
small chunks that can be run independently and concurrently.

If you’ve come from a conventional programming language, this may
worry you. Concurrent programming is “known” to be difficult, and
there’s a performance penalty to pay when you create lots of
processes.

Elixir doesn’t have these issues, thanks to the architecture of the
Erlang VM on which it runs.

Elixir uses the actor model of concurrency. An actor is an
independent process that shares nothing with any other process. You
can spawn new processes, send them messages, and receive messages
back. And that’s it (apart from some details about error handling and
monitoring, which we cover later).

In the past, you may have had to use threads or operating system
processes to achieve concurrency. Each time, you probably felt you
were opening Pandora’s box—there was so much that could go wrong. But
that worry just evaporates in Elixir. In fact, Elixir developers are
so comfortable creating new processes, they’ll often do it at times
when you’d have created an object in a language such as Java.

One more thing—when we talk about processes in Elixir, we are not
talking about native operating-system processes. These are too slow
and bulky. Instead, Elixir uses process support in Erlang. These
processes will run across all your CPUs (just like native processes),
but they have very little overhead. As we’ll cover a bit later, it’s
very easy to create hundreds of thousands of Elixir processes on even
a modest computer.

A Simple Process

Here’s a module that defines a function we’d like to run as a
separate process:
spawn/spawn-basic.ex
	​ 	​defmodule​ SpawnBasic ​do​
	​ 	 ​def​ greet ​do​
	​ 	 IO.puts ​"​​Hello"​
	​ 	 ​end​
	​ 	​end​

Yup, that’s it. There’s nothing special—it’s just regular code.

Let’s fire up IEx and play:
	​ 	​iex>​ c(​"​​spawn-basic.ex"​)
	​ 	[SpawnBasic]

First let’s call it as a regular function:
	​ 	​iex>​ SpawnBasic.greet
	​ 	Hello
	​ 	:ok

Now let’s run it in a separate process:
	​ 	​iex>​ spawn(SpawnBasic, ​:greet​, [])
	​ 	Hello
	​ 	#PID<0.42.0>

The spawn function kicks off a new process. It comes in many forms,
but the two simplest ones let you run an anonymous function and run
a named function in a module, passing a list of arguments. (We used the latter here.)

The spawn returns a process identifier, normally called a
PID. This uniquely identifies the process it creates. (This identifier could be unique among all processes in the world, but here it’s just unique in our
application.)

When we call spawn, it creates a new process to run the code we
specify. We don’t know exactly when it will execute—only that
it is eligible to run.

In this example, we can see that our function ran and output “Hello”
prior to IEx reporting the PID returned by spawn. But you can’t
rely on this. Instead you’ll use messages to synchronize your processes’ activity.
Sending Messages Between Processes

Let’s rewrite our example to use messages. The top level will send
greet a message containing a string, and the greet function will
respond with a greeting containing that message.

In Elixir we send a message using the send function. It takes a PID
and the message to send (an Elixir value, which
we also call a term) on the right. You can send anything you want,
but most Elixir developers seem to use atoms and tuples.

We wait for messages using receive. In a way, this acts the same as
case, with the message body as the parameter. Inside the block
associated with the receive call, you can specify any number of
patterns and associated actions. Just as with case, the action
associated with the first pattern that matches the function is run.

Here’s the updated version of our greet function.
spawn/spawn1.exs
	​ 	​defmodule​ Spawn1 ​do​
	​ 	 ​def​ greet ​do​
	​ 	 ​receive​ ​do​
	​ 	 {sender, msg} ->
	​ 	 send sender, { ​:ok​, ​"​​Hello, ​​#{​msg​}​​"​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​# here's a client​
	​ 	pid = spawn(Spawn1, ​:greet​, [])
	​ 	send pid, {self(), ​"​​World!"​}
	​ 	
	​ 	​receive​ ​do​
	​ 	 {​:ok​, message} ->
	​ 	 IO.puts message
	​ 	​end​

The function uses receive to wait for a message, and then matches
the message in the block. In this case, the only pattern is a
two-element tuple, where the first element is the original sender’s PID and the second is the message. In the corresponding action, we use
send sender, ... to send a formatted string back to the original
message sender. We package that string into a tuple, with :ok as its
first element.

Outside the module, we call spawn to create a process, and send it a
tuple:
	​ 	send pid, { self, ​"​​World!"​ }

The function self returns its caller’s PID. Here we use it to
pass our PID to the greet function so it will know where to send
the response.

We then wait for a response. Notice that we do a pattern match on
{:ok, message}, extracting the second element of the tuple, which
contains the actual text.

We can run this in IEx:
	​ 	​iex>​ c(​"​​spawn1.exs"​)
	​ 	Hello, World!
	​ 	[Spawn1]

Very cool. The text was sent, and greet responded with the full
greeting.
Handling Multiple Messages

Let’s try sending a second message.
spawn/spawn2.exs
	​ 	​defmodule​ Spawn2 ​do​
	​ 	 ​def​ greet ​do​
	​ 	 ​receive​ ​do​
	​ 	 {sender, msg} ->
	​ 	 send sender, { ​:ok​, ​"​​Hello, ​​#{​msg​}​​"​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​# here's a client​
	​ 	pid = spawn(Spawn2, ​:greet​, [])
	​ 	
	​ 	send pid, {self(), ​"​​World!"​}
	​ 	
	​ 	​receive​ ​do​
	​ 	 {​:ok​, message} ->
	​ 	 IO.puts message
	​ 	​end​
	​ 	
	​ 	send pid, {self(), ​"​​Kermit!"​}
	​ 	​receive​ ​do​
	​ 	 {​:ok​, message} ->
	​ 	 IO.puts message
	​ 	​end​

Run it in IEx:
	​ 	​iex>​ c(​"​​spawn2.exs"​)
	​ 	Hello, World!
	​ just sits there

The first message is sent back, but the second is nowhere to be
seen. What’s worse, IEx just hangs, and we have to use ^C (the
Control-C key sequence) to get out of it.

That’s because our greet function handles only a single
message. Once it has processed the receive, it exits. As a result,
the second message we send it is never processed. The second receive
at the top level then just hangs, waiting for a response that will
never come.

Let’s
at least fix the hanging part. We can tell receive that we want to
time out if a response is not received in so many milliseconds. This
uses a pseudopattern called
after.
spawn/spawn3.exs
	​ 	​defmodule​ Spawn3 ​do​
	​ 	 ​def​ greet ​do​
	​ 	 ​receive​ ​do​
	​ 	 {sender, msg} ->
	​ 	 send sender, { ​:ok​, ​"​​Hello, ​​#{​msg​}​​"​ }
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​# here's a client​
	​ 	pid = spawn(Spawn3, ​:greet​, [])
	​ 	
	​ 	send pid, {self(), ​"​​World!"​}
	​ 	​receive​ ​do​
	​ 	 {​:ok​, message} ->
	​ 	 IO.puts message
	​ 	​end​
	​ 	
	​ 	send pid, {self(), ​"​​Kermit!"​}
	​ 	​receive​ ​do​
	​ 	 {​:ok​, message} ->
	​ 	 IO.puts message
	»	 ​after​ 500 ->
	»	 IO.puts ​"​​The greeter has gone away"​
	​ 	​end​

	​ 	​iex>​ c(​"​​spawn3.exs"​)
	​ 	Hello, World!
	​ 	​... short pause ...​
	​ 	The greeter has gone away
	​ 	[Spawn3]

But how would we make our greet function handle multiple messages? Our
natural reaction is to make it loop, doing a receive on each
iteration. Elixir doesn’t have loops, but it does have recursion.
spawn/spawn4.exs
	​ 	​defmodule​ Spawn4 ​do​
	​ 	 ​def​ greet ​do​
	​ 	 ​receive​ ​do​
	​ 	 {sender, msg} ->
	​ 	 send sender, { ​:ok​, ​"​​Hello, ​​#{​msg​}​​"​ }
	»	 greet()
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​# here's a client​
	​ 	pid = spawn(Spawn4, ​:greet​, [])
	​ 	send pid, {self(), ​"​​World!"​}
	​ 	​receive​ ​do​
	​ 	 {​:ok​, message} ->
	​ 	 IO.puts message
	​ 	​end​
	​ 	
	​ 	send pid, {self(), ​"​​Kermit!"​}
	​ 	​receive​ ​do​
	​ 	 {​:ok​, message} ->
	​ 	 IO.puts message
	​ 	 ​after​ 500 ->
	​ 	 IO.puts ​"​​The greeter has gone away"​
	​ 	​end​

Run this, and both messages are processed:

	​ 	​iex>​ c(​"​​spawn4.exs"​)
	​ 	Hello, World!
	​ 	Hello, Kermit!
	​ 	[Spawn4]

Recursion, Looping, and the Stack

The greet function might have worried you a
little. Every time it receives a message, it ends up calling
itself. In many languages, that adds a new frame to
the stack. After a large number of messages, you might run out
of memory.

This doesn’t happen in Elixir, as it implements
tail-call optimization. If the last thing a
function does is call itself, there’s no need to make the
call. Instead, the runtime simply jumps back to the start
of the function. If the recursive call has arguments, then
these replace the original parameters. But beware—the recursive call must be the very last thing
executed. For example, the following code is not tail
recursive:
	​ 	​def​ factorial(0), ​do​: 1
	​ 	​def​ factorial(n), ​do​: n * factorial(n-1)

While the recursive call is physically the last thing in
the function, it is not the last thing executed. The function
has to multiply the value it returns by n.

To make it tail recursive, we need to move the multiplication into the
recursive call, and this means adding an accumulator:

spawn/fact_tr.exs
	​ 	​defmodule​ TailRecursive ​do​
	​ 	 ​def​ factorial(n), ​do​: _fact(n, 1)
	​ 	 ​defp​ _fact(0, acc), ​do​: acc
	​ 	 ​defp​ _fact(n, acc), ​do​: _fact(n-1, acc*n)
	​ 	​end​

Process Overhead

At the start of the chapter, I somewhat cavalierly said Elixir
processes were very low overhead. Now it’s time to back that up. Let’s
write some code that creates n processes. The first will send a
number to the second. It will increment that number and pass it to the
third. This will continue until we get to the last process, which will
pass the number back to the top level.
spawn/chain.exs
	​1: 	​defmodule​ Chain ​do​
	​- 	 ​def​ counter(next_pid) ​do​
	​- 	 ​receive​ ​do​
	​- 	 n ->
	​5: 	 send next_pid, n + 1
	​- 	 ​end​
	​- 	 ​end​
	​- 	
	​- 	 ​def​ create_processes(n) ​do​
	​10: 	 code_to_run = ​fn​ (_,send_to) ->
	​- 	 spawn(Chain, ​:counter​, [send_to])
	​- 	 ​end​
	​- 	
	​- 	 last = Enum.reduce(1..n, self(), code_to_run)
	​15: 	
	​- 	 send(last, 0) ​# start the count by sending a zero to the last process​
	​- 	
	​- 	 ​receive​ ​do​ ​# and wait for the result to come back to us​
	​- 	 final_answer ​when​ is_integer(final_answer) ->
	​20: 	 ​"​​Result is ​​#{​inspect(final_answer)​}​​"​
	​- 	 ​end​
	​- 	 ​end​
	​- 	
	​- 	 ​def​ run(n) ​do​
	​25: 	 ​:timer​.tc(Chain, ​:create_processes​, [n])
	​- 	 |> IO.inspect
	​- 	 ​end​
	​- 	​end​

The counter function on line 2 is
the code that will be run in separate processes. It is passed the PID
of the next process in the chain. When it receives a number, it
increments it and sends it on to that next process.

The create_processes function is probably the densest piece of
Elixir we’ve encountered so far. Let’s break it down.

It is passed the number of processes to create. Each process has to be
passed the PID of the previous process so that it knows who to send
the updated number to.

The code that creates each process is defined in a one-line anonymous
function, which is assigned to the variable code_to_run. The function
takes two parameters because we’re passing it to Enum.reduce on
line 14.

The reduce call will iterate over the range 1..n. Each time
around, it will pass an accumulator as the second parameter to its
function. We set the initial value of that accumulator to self, our
PID.

In the function, we spawn a new process that runs the counter
function, using the third parameter of spawn to pass in the accumulator’s current
value (initially self). The value
spawn returns is the PID of the newly created process, which becomes the
accumulator’s value for the next iteration.

Putting it another way, each time we spawn a new process, we pass it
the previous process’s PID in the send_to parameter.

The value that the reduce function returns is the accumulator’s final value, which is the PID of the last process created.

On the next line we set the ball rolling by passing 0 to the last
process. The process increments the value and so passes 1 to the
second-to-last process. This goes on until the very first process we
created passes the result back to us. We use the receive block to
capture this, and format the result into a nice message.

Our receive block contains a new feature. We’ve already seen how guard
clauses can constrain pattern matching and function calling. The same
guard clauses can be used to qualify the pattern in a receive
block.

Why do we need this, though? It turns out there’s a bug in some
versions of Elixir.[32] When you compile and run a program
using iex -S mix, a residual message is left lying around from
the compilation process (it records a process’s termination). We
ignore that message by telling the receive clause that we’re
interested only in simple integers.

The run function starts the whole thing off. It uses a
built-in Erlang library, tc, which can time a function’s execution. We pass it the module, name, and parameters, and it
responds with a tuple. The first element is the execution time in
microseconds and the second is the result the function returns.

We’ll run this code from the command line rather than from IEx. (You’ll
see why in a second.) These results are on my 2011 MacBook Air (2.13 GHz
Core 2 Duo and 4 GB of RAM).
	​ 	​$ ​​elixir​​ ​​-r​​ ​​chain.exs​​ ​​-e​​ ​​"Chain.run(10)"​
	​ 	{4015, "Result is 10"}

We asked it to run 10 processes, and it came back in 4 ms. The
answer looks correct. Let’s try 100 processes.
	​ 	​$ ​​elixir​​ ​​-r​​ ​​chain.exs​​ ​​-e​​ ​​"Chain.run(100)"​
	​ 	{4562, "Result is 100"}

Only a small increase in the time. There’s probably some startup
latency on the first process creation. Onward! Let’s try 1,000.
	​ 	​$ ​​elixir​​ ​​-r​​ ​​chain.exs​​ ​​-e​​ ​​"Chain.run(1_000)"​
	​ 	{8458, "Result is 1000"}

Now 10,000.
	​ 	​$ ​​elixir​​ ​​-r​​ ​​chain.exs​​ ​​-e​​ ​​"Chain.run(10_000)"​
	​ 	{66769, "Result is 10000"}

Ten thousand processes created and executed in 66 ms. Let’s try for 400,000.
	​ 	​$ ​​elixir​​ ​​-r​​ ​​chain.exs​​ ​​-e​​ ​​"Chain.run(400_000)"​
	​ 	=ERROR REPORT==== 25-Apr-2013::15:16:14 ===
	​ 	Too many processes
	​ 	** (SystemLimitError) a system limit has been reached

It looks like the virtual machine won’t support 400,000
processes. Fortunately, this is not a hard limit—we just bumped into a
default value. We can increase this using the VM’s +P parameter. We pass this parameter to the VM using the --erl parameter to
elixir. (This is why I chose to run from the command line.)
	​ 	​$ ​​elixir​​ ​​--erl​​ ​​"+P 1000000"​​ ​​-r​​ ​​chain.exs​​ ​​-e​​ ​​"Chain.run(400_000)"​
	​ 	{2249466, "Result is 400000"}

One last run, this time with 1,000,000 processes.
	​ 	​$ ​​elixir​​ ​​--erl​​ ​​"+P 1000000"​​ ​​-r​​ ​​chain.exs​​ ​​-e​​ ​​"Chain.run(1_000_000)"​
	​ 	{5135238, "Result is 1000000"}

We ran a million processes (sequentially) in just over 5 seconds. And, as
the graph shows, the time per process was pretty much linear once
we overcame the startup time.

This
kind of performance is stunning, and it changes the way we design
code. We can now create hundreds of little helper processes. And each
process can contain its own state—in a way, processes in Elixir are
like objects in an object-oriented system (but they’re more self-contained).

Your Turn
	Exercise: WorkingWithMultipleProcesses-1

Run this code on your machine. See if you get comparable results.

	Exercise: WorkingWithMultipleProcesses-2

Write a program that spawns two processes and then passes each a
unique token (for example, “fred” and “betty”). Have them send the
tokens back.
	
Is the order in which the replies are received deterministic in
theory? In practice?

	
If either answer is no, how could you make it so?

When Processes Die

Who gets told when a process dies? By default, no one. Obviously the
VM knows and can report it to the console, but your code will be
oblivious unless you explicitly tell Elixir you want to get
involved. Here’s the default case: we spawn a function that uses the
Erlang timer library to sleep for 500 ms. It then exits with a status
of :boom. The code that spawns it sits in a receive. If it receives a message,
it reports that fact; otherwise, after one second it lets us know that
nothing happened.
spawn/link1.exs
	​ 	​defmodule​ Link1 ​do​
	​ 	 ​import​ ​:timer​, ​only:​ [​sleep:​ 1]
	​ 	
	​ 	 ​def​ sad_function ​do​
	​ 	 sleep 500
	​ 	 ​exit​(​:boom​)
	​ 	 ​end​

	​ 	 ​def​ run ​do​
	​ 	 spawn(Link1, ​:sad_function​, [])
	​ 	 ​receive​ ​do​
	​ 	 msg ->
	​ 	 IO.puts ​"​​MESSAGE RECEIVED: ​​#{​inspect msg​}​​"​
	​ 	 ​after​ 1000 ->
	​ 	 IO.puts ​"​​Nothing happened as far as I am concerned"​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	Link1.run

(Think about how you’d have written this in your old
programming language.)

We can run this from the console:
	​ 	​$ ​​elixir​​ ​​-r​​ ​​link1.exs​
	​ 	Nothing happened as far as I am concerned

The top level got no notification when
the spawned process exited.
Linking Two Processes

If we want two processes to share in each other’s pain, we can link
them. When processes are linked, each can receive information when the
other exits. The spawn_link call spawns a process and links it to
the caller in one operation.
spawn/link2.exs
	​ 	​defmodule​ Link2 ​do​
	​ 	 ​import​ ​:timer​, ​only:​ [​sleep:​ 1]
	​ 	
	​ 	 ​def​ sad_function ​do​
	​ 	 sleep 500
	​ 	 ​exit​(​:boom​)
	​ 	 ​end​
	​ 	 ​def​ run ​do​
	»	 spawn_link(Link2, ​:sad_function​, [])
	​ 	 ​receive​ ​do​
	​ 	 msg ->
	​ 	 IO.puts ​"​​MESSAGE RECEIVED: ​​#{​inspect msg​}​​"​
	​ 	 ​after​ 1000 ->
	​ 	 IO.puts ​"​​Nothing happened as far as I am concerned"​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	Link2.run

The runtime reports the abnormal termination:
	​ 	​$ ​​elixir​​ ​​-r​​ ​​link2.exs​
	​ 	** (EXIT from ​#PID<0.73.0>) :boom​

So our child process died, and it killed the entire
application. That’s the default behavior of linked processes—when one
exits abnormally, it kills the other.

What if you want to handle the death of another process? Well, you
probably don’t want to do this. Elixir uses the OTP framework for
constructing process trees, and OTP includes the concept of process
supervision. An incredible amount of effort has been spent getting
this right, so I recommend using it most of the time. (We cover this
in Chapter 18, ​OTP: Supervisors​.)

However, you can tell Elixir to convert the exit signals from a linked
process into a message you can handle. Do this by trapping the
exit.
spawn/link3.exs
	​ 	​defmodule​ Link3 ​do​
	​ 	 ​import​ ​:timer​, ​only:​ [​sleep:​ 1]
	​ 	
	​ 	 ​def​ sad_function ​do​
	​ 	 sleep 500
	​ 	 ​exit​(​:boom​)
	​ 	 ​end​
	​ 	 ​def​ run ​do​
	»	 Process.flag(​:trap_exit​, true)
	​ 	 spawn_link(Link3, ​:sad_function​, [])
	​ 	 ​receive​ ​do​
	​ 	 msg ->
	​ 	 IO.puts ​"​​MESSAGE RECEIVED: ​​#{​inspect msg​}​​"​
	​ 	 ​after​ 1000 ->
	​ 	 IO.puts ​"​​Nothing happened as far as I am concerned"​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	Link3.run

This time we see an :EXIT message when the spawned process
terminates:
	​ 	​$ ​​elixir​​ ​​-r​​ ​​link3.exs​
	​ 	MESSAGE RECEIVED: {:EXIT, ​#PID<0.78.0>, :boom}​

It doesn’t matter why a process exits—it may simply finish processing,
it may explicitly exit, or it may raise an exception—the same :EXIT
message is received. Following an error, however, it contains details
of what went wrong.
Monitoring a Process

Linking joins the calling process and another process—each receives
notifications about the other. By contrast, monitoring lets a
process spawn another and be notified of its termination, but without
the reverse notification—it is one-way only.

When you monitor a process, you receive a :DOWN message when it
exits or fails, or if it doesn’t exist.

You can use spawn_monitor to turn on monitoring when you spawn a process, or you can use
Process.monitor to monitor an existing process. However, if you use Process.monitor (or link to
an existing process), there is a potential race condition—if the other
process dies before your monitor call completes, you may not receive a
notification. The spawn_link and spawn_monitor versions are
atomic, however, so you’ll always catch a failure.
spawn/monitor1.exs
	​ 	​defmodule​ Monitor1 ​do​
	​ 	 ​import​ ​:timer​, ​only:​ [​sleep:​ 1]
	​ 	
	​ 	 ​def​ sad_function ​do​
	​ 	 sleep 500
	​ 	 ​exit​(​:boom​)
	​ 	 ​end​
	​ 	 ​def​ run ​do​
	»	 res = spawn_monitor(Monitor1, ​:sad_function​, [])
	​ 	 IO.puts inspect res
	​ 	 ​receive​ ​do​
	​ 	 msg ->
	​ 	 IO.puts ​"​​MESSAGE RECEIVED: ​​#{​inspect msg​}​​"​
	​ 	 ​after​ 1000 ->
	​ 	 IO.puts ​"​​Nothing happened as far as I am concerned"​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	Monitor1.run

Run it, and the results are similar to the spawn_link version:
	​ 	​$ ​​elixir​​ ​​-r​​ ​​monitor1.exs​
	​ 	{​#PID<0.78.0>, #Reference<0.1328...>}​
	​ 	MESSAGE RECEIVED: {:DOWN, ​#Reference<0.1328...>, :process,​
	​ 	​ #PID<0.78.0>, :boom}​

(The Reference record in the message is the identity of the monitor
that was created. The
spawn_monitor call also returns it, along with the PID.)

So, when do you use links and when should you choose monitors?

It depends on your processes’ semantics. If the intent is that a
failure in one process should terminate another, then you need
links. If instead you need to know when some other process exits for
any reason, choose monitors.

Your Turn

The Erlang function timer.sleep(time_in_ms) suspends the current
process for a given time. You might want to use it to force some
scenarios in the following exercises. The key with the exercises is to
get used to the different reports you’ll see when you’re
developing code.
	Exercise: WorkingWithMultipleProcesses-3

Use spawn_link to start a process, and have that process send a
message to the parent and then exit
immediately. Meanwhile, sleep for 500 ms in the parent, then
receive as many messages as are waiting. Trace what you
receive. Does it matter that you weren’t waiting for the
notification from the child when it exited?

	Exercise: WorkingWithMultipleProcesses-4

Do the same, but have the child raise an exception. What difference
do you see in the tracing?

	Exercise: WorkingWithMultipleProcesses-5

Repeat the two, changing spawn_link to spawn_monitor.

Parallel Map—The “Hello, World” of Erlang

Devin Torres reminded me that every book in the Erlang space must, by
law, include a parallel map function. Regular map
returns the list that results from applying a function to each element
of a collection. The parallel version does the same, but it applies
the function to each element in a separate process.
spawn/pmap.exs
	​ 	​defmodule​ Parallel ​do​
	​ 	 ​def​ pmap(collection, fun) ​do​
	​ 	 me = self()
	​ 	 collection
	​ 	 |> Enum.map(​fn​ (elem) ->
	​ 	 spawn_link ​fn​ -> (send me, { self(), fun.(elem) }) ​end​
	​ 	 ​end​)
	​ 	 |> Enum.map(​fn​ (pid) ->
	​ 	 ​receive​ ​do​ { ^pid, result } -> result ​end​
	​ 	 ​end​)
	​ 	 ​end​
	​ 	​end​

Our method contains two transformations (look for the |>
operator). The first transformation maps collection
into a list of PIDs, where each PID in the list runs the given
function on an individual list element. If the collection
contains 1,000 items, we’ll run 1,000 processes.

The second transformation converts the list of PIDs into
the results returned by the processes corresponding to each PID in the
list. Note how it uses ^pid in the receive block to get the result
for each PID in turn. Without this we’d get back the results in random
order.

But does it work?
	​ 	​iex>​ c(​"​​pmap.exs"​)
	​ 	[Parallel]
	​ 	​iex>​ Parallel.pmap 1..10, &(&1 * &1)
	​ 	[1,4,9,16,25,36,49,64,81,100]

That’s pretty sweet, but it gets better,
as we’ll cover when we
look at tasks and agents.

Your Turn
	Exercise: WorkingWithMultipleProcesses-6

In the pmap code, I assigned the value of self to the variable
me at the top of the method and then used me as the target of
the message returned by the spawned processes. Why use a separate
variable here?

	Exercise: WorkingWithMultipleProcesses-7

Change the ^pid in pmap to _pid. This means the receive
block will take responses in the order the processes send them. Now
run the code again. Do you see any difference in the output? If
you’re like me, you don’t, but the program clearly contains a bug.
Are you scared by this? Can you find a way to reveal the problem
(perhaps by passing in a different function, by sleeping, or by
increasing the number of processes)? Change it back to ^pid and
make sure the order is now correct.

A Fibonacci Server

Let’s round out this chapter with an example program. Its task is to
calculate fib(n) for a list of n, where fib(n) is the nth Fibonacci number. (The Fibonacci sequence starts
0, 1. Each subsequent number is the sum of the preceding two numbers
in the sequence.)[33] I chose this not because it is something we
all do every day, but because the naive calculation of Fibonacci
numbers 10 through 37 takes a measurable number of seconds on typical
computers.

The twist is that we’ll write our program to calculate different
Fibonacci numbers in parallel. To do this, we’ll write a trivial
server process that does the calculation, and a
scheduler that assigns work to a calculation process when it becomes
free. The following diagram shows the message flow.

When the calculator is ready for the next number, it sends a :ready
message to the scheduler. If there is still work to do, the scheduler
sends it to the calculator in a :fib message; otherwise it sends the
calculator a :shutdown. When a calculator receives a :fib message,
it calculates the given Fibonacci number and returns it in an
:answer. If it gets a :shutdown, it simply exits.

Here’s the Fibonacci calculator module:
spawn/fib.exs
	​ 	​defmodule​ FibSolver ​do​
	​ 	
	​ 	 ​def​ fib(scheduler) ​do​
	​ 	 send scheduler, { ​:ready​, self() }
	​ 	 ​receive​ ​do​
	​ 	 { ​:fib​, n, client } ->
	​ 	 send client, { ​:answer​, n, fib_calc(n), self() }
	​ 	 fib(scheduler)
	​ 	 { ​:shutdown​ } ->
	​ 	 ​exit​(​:normal​)
	​ 	 ​end​
	​ 	 ​end​

	​ 	 ​# very inefficient, deliberately​
	​ 	 ​defp​ fib_calc(0), ​do​: 0
	​ 	 ​defp​ fib_calc(1), ​do​: 1
	​ 	 ​defp​ fib_calc(n), ​do​: fib_calc(n-1) + fib_calc(n-2)
	​ 	​end​

The public API is the fib function, which takes the scheduler
PID. When it starts, it sends a :ready message to the scheduler and waits for a message back.

If it gets a :fib message, it calculates the answer and sends it
back to the client. It then loops by calling itself recursively. This
will send another :ready message, telling the client it is ready for
more work.

If it gets a :shutdown it simply exits.
The Task Scheduler

The scheduler is a little more complex, as it is designed to handle
both a varying number of server processes and an unknown amount of work.
spawn/fib.exs
	​ 	​defmodule​ Scheduler ​do​
	​ 	
	​ 	 ​def​ run(num_processes, module, func, to_calculate) ​do​
	​ 	 (1..num_processes)
	​ 	 |> Enum.map(​fn​(_) -> spawn(module, func, [self()]) ​end​)
	​ 	 |> schedule_processes(to_calculate, [])
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ schedule_processes(processes, queue, results) ​do​
	​ 	 ​receive​ ​do​
	​ 	 {​:ready​, pid} ​when​ length(queue) > 0 ->
	​ 	 [next | tail] = queue
	​ 	 send pid, {​:fib​, next, self()}
	​ 	 schedule_processes(processes, tail, results)
	​ 	
	​ 	 {​:ready​, pid} ->
	​ 	 send pid, {​:shutdown​}
	​ 	 ​if​ length(processes) > 1 ​do​
	​ 	 schedule_processes(List.delete(processes, pid), queue, results)
	​ 	 ​else​
	​ 	 Enum.sort(results, ​fn​ {n1,_}, {n2,_} -> n1 <= n2 ​end​)
	​ 	 ​end​
	​ 	
	​ 	 {​:answer​, number, result, _pid} ->
	​ 	 schedule_processes(processes, queue, [{number, result} | results])
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

The public API for the scheduler is the run function. It receives the
number of processes to spawn, the module and function to spawn, and a
list of things to process. The scheduler is pleasantly ignorant of the
actual task being performed.

Let’s emphasize that last point. Our scheduler knows nothing
about Fibonacci numbers. Exactly the same code will happily
manage processes working on DNA sequencing or password cracking.

The run function spawns the correct number of processes and records
their PIDs. It then calls the workhorse function, schedule_processes.

This function is basically a receive loop. If it gets a :ready
message from a server, it sees if there is more work in the queue. If
there is, it passes the next number to the calculator and then
recurses with one fewer number in the queue.

If the work queue is empty when it receives a :ready message, it
sends a shutdown to the server. If this is the last process, then
we’re done and it sorts the accumulated results. If it isn’t the last
process, it removes the process from the list of processes
and recurses to handle another message.

Finally, if it gets an :answer message, it records the answer in the
result accumulator and recurses to handle the next message.

We drive the scheduler with the following code:
spawn/fib.exs
	​ 	to_process = List.duplicate(37, 20)
	​ 	
	​ 	Enum.each 1..10, ​fn​ num_processes ->
	​ 	 {time, result} = ​:timer​.tc(
	​ 	 Scheduler, ​:run​,
	​ 	 [num_processes, FibSolver, ​:fib​, to_process]
	​)
	​ 	
	​ 	 ​if​ num_processes == 1 ​do​
	​ 	 IO.puts inspect result
	​ 	 IO.puts ​"​​\n ​​#​​ time (s)"​
	​ 	 ​end​
	​ 	 ​:io​.format ​"​​~2B ~.2f~n"​, [num_processes, time/1000000.0]
	​ 	​end​

The to_process list contains the numbers we’ll be passing to our
fib servers. In our case, we give it the same number, 37, 20 times.
The intent here is to load each of our processors.

We run the code a total of 10 times, varying the number of spawned
processes from 1 to 10. We use :timer.tc to determine the elapsed
time of each iteration, reporting the result in seconds. The first
time around the loop, we also display the numbers we calculated.
	​ 	​$ ​​elixir​​ ​​fib.exs​
	​ 	[{37, 24157817}, {37, 24157817}, {37, 24157817}, . . .]
	​ 	
	​ 	​ # time (s)​
	​ 	 1 21.22
	​ 	 2 11.24
	​ 	 3 7.99
	​ 	 4 5.89
	​ 	 5 5.95
	​ 	 6 6.40
	​ 	 7 6.00
	​ 	 8 5.92
	​ 	 9 5.84
	​ 	10 5.85

Cody Russell kindly ran this for me on his four-core system.
He saw a dramatic reduction in elapsed time
when we increase the concurrency from one to two, small decreases
until we hit four processes, then fairly flat performance after that.
The Activity Monitor showed a consistent 380% CPU use once the
concurrency got above 4. (If you want to see similar results on
systems with more cores, you’ll need to increase the number of entries
in the to_process list.)

Your Turn
	Exercise: WorkingWithMultipleProcesses-8

Run the Fibonacci code on your machine. Do you get comparable
timings? If your machine has multiple cores and/or processors, do
you see improvements in the timing as we increase the application’s concurrency?

	Exercise: WorkingWithMultipleProcesses-9

Take this scheduler code and update it to let you run a function
that finds the number of times the word “cat” appears in each file
in a given directory. Run one server process per file. The function
File.ls! returns the names of files in a directory, and
File.read! reads the contents of a file as a binary. Can you write it as
a more generalized scheduler?

Run your code on a directory with a reasonable number of files (maybe around
100) so you can experiment with the effects of concurrency.

Agents—A Teaser

Our Fibonacci code is really inefficient. To calculate fib(5),
we calculate this:
	​ 	fib(5)
	​ 	= fib(4) + fib(3)
	​ 	= fib(3) + fib(2) + fib(2) + fib(1)
	​ 	= fib(2) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) + fib(1)
	​ 	= fib(1) + fib(0) + fib(1) + fib(1) + fib(0) + fib(1) + fib(0) + fib(1)

Look at all that duplication. If only we could cache the
intermediate values.

As you know, Elixir modules are basically buckets of functions—they
cannot hold state. But processes can hold state. And Elixir comes with
a library module called Agent that makes it easy to wrap a process
containing state in a nice module interface. Don’t worry about the
details of the code that follows—we cover agents and tasks. For now, just see how
processes are among the tools we use to add persistence to Elixir
code. (This code comes from a mailing-list post by José Valim, written
in response to some ugly code I wrote.)
spawn/fib_agent.exs
	​ 	​defmodule​ FibAgent ​do​
	​ 	 ​def​ start_link ​do​
	​ 	 Agent.start_link(​fn​ -> %{ 0 => 0, 1 => 1 } ​end​)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ fib(pid, n) ​when​ n >= 0 ​do​
	​ 	 Agent.get_and_update(pid, &do_fib(&1, n))
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ do_fib(cache, n) ​do​
	​ 	 ​case​ cache[n] ​do​
	​ 	 nil ->
	​ 	 { n_1, cache } = do_fib(cache, n-1)
	​ 	 result = n_1 + cache[n-2]
	​ 	 { result, Map.put(cache, n, result) }
	​ 	
	​ 	 cached_value ->
	​ 	 { cached_value , cache }
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	​end​
	​ 	
	​ 	{​:ok​, agent} = FibAgent.start_link()
	​ 	IO.puts FibAgent.fib(agent, 2000)

Let’s run it:
	​ 	​$ ​​elixir​​ ​​fib_agent.exs​
	​ 	42246963333923048787067256023414827825798528402506810980102801373143085843701
	​ 	30707224123599639141511088446087538909603607640194711643596029271983312598737
	​ 	32625355580260699158591522949245390499872225679531698287448247299226390183371
	​ 	67780606070116154978867198798583114688708762645973690867228840236544222952433
	​ 	47964480139515349562972087652656069529806499841977448720155612802665404554171
	​ 	717881930324025204312082516817125

If we’d tried to calculate fib(2000) using the noncached version, the
sun would grow to engulf the Earth while we were waiting for it to finish.

Thinking in Processes

If you first started programming with procedural languages and then
moved to an object-oriented style, you’ll have experienced a period of dislocation
as you tried to get your head to think in terms of objects.

The same will be happening now as you start to think of your work in
terms of processes. Just about every decent Elixir program will have
many, many processes, and by and large they’ll be just as easy to
create and manage as the objects were in object-oriented programming. But learning
to think that way takes awhile. Stick with it.

So far we’ve been running our processes in the same VM. But if we’re
planning on taking over the world, we need to be able to
scale. And that means running on more than one machine.

The abstraction for this is the node, and that’s the subject of the next chapter.

Footnotes

	[32]
	
https://github.com/elixir-lang/elixir/issues/1050

	[33]
	
http://en.wikipedia.org/wiki/Fibonacci_number

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 16
Nodes—The Key to Distributing Services

There’s nothing mysterious about a node. It is simply a running
Erlang VM. Throughout this book we’ve been running our code on a node.

The Erlang VM, called Beam, is more than a simple
interpreter. It’s like its own little operating system running
on top of your host operating system. It handles its own events,
process scheduling, memory, naming services, and interprocess
communication. In addition to all that, a node can connect to other
nodes—in the same computer, across a LAN, or across the
Internet—and provide many of the same services across these
connections that it provides to the processes it hosts locally.

Naming Nodes

So far we haven’t needed to give our node a name—we’ve had only
one. If we ask Elixir what the current node is called, it’ll give us
a made-up name:
	​ 	​iex>​ Node.self
	​ 	:nonode@nohost

We can set the name of a node when we start it. With IEx, use
either the --name or --sname option. The former sets a fully
qualified name:
	​ 	​$ ​​iex​​ ​​--name​​ ​​wibble@light-boy.local​
	​ 	iex(wibble@light-boy.local)> Node.self
	​ 	:"wibble@light-boy.local"

The latter sets a short name:
	​ 	​$ ​​iex​​ ​​--sname​​ ​​wobble​
	​ 	iex(wobble@light-boy)> Node.self
	​ 	:"wobble@light-boy"

The name that’s returned is an atom—it’s in quotes because
it contains characters not allowed in a literal atom.

Note that in both cases the IEx prompt contains the node’s name along
with my machine’s name (light-boy).
	If You Run OS X

	

 	

Apple did something strange a while back—the local hostname is resolved
only if you have particular sharing services enabled. If they
aren’t enabled, then you can’t access your computer using its name.
This means that Elixir can’t find it when using the --sname option.

The simplest fix, which is a bit of a hack, it to add your machine’s
name to your /etc/hosts file.

First find the name:

	​ 	​$ ​​scutil​​ ​​--get​​ ​​LocalHostName​
	​ 	«your-computer's-name»

Then edit /etc/hosts (you’ll need to use sudo)
and add this line:

	​ 	127.0.0.1 «your-computer's-name»

Now I want to show you what happens when we have two nodes
running. The easiest way to do this is to open two terminal windows
and run a node in each. To represent these windows in the book, I’ll
show them stacked vertically.

Let’s run a node called node_one in the top window and node_two
in the bottom one. We’ll then use the Elixir Node module’s list
function to display a list of known nodes, then connect from one to
the other.
	Window #1

	

	​ 	$ iex --sname node_one
	​ 	iex(node_one@light-boy)>

	Window #2

	

	​ 	$ iex --sname node_two
	​ 	iex(node_two@light-boy)> Node.list
	​ 	[]
	​ 	iex(node_two@light-boy)> Node.connect :"node_one@light-boy"
	​ 	true
	​ 	iex(node_two@light-boy)> Node.list
	​ 	[:"node_one@light-boy"]

Initially, node_two doesn’t know about any other nodes. But after we
connect to node_one (notice that we pass an atom containing that node’s name), the list shows the other node. And if we go back to
node one, it will now know about node two.
	​ 	iex(node_one@light-boy)> Node.list
	​ 	[:"node_two@light-boy"]

Now that we have two nodes, we can try running some code. On node
one, let’s create an anonymous function that outputs the
current node name.
	​ 	iex(node_one@light-boy)> func = fn -> IO.inspect Node.self end
	​ 	#Function<erl_eval.20.82930912>

We can run this with the spawn function.
	​ 	iex(node_one@light-boy)> spawn(func)
	​ 	#PID<0.59.0>
	​ 	node_one@light-boy

But spawn also lets us specify a node name. The process will be
spawned on that node.
	​ 	iex(node_one@light-boy)> Node.spawn(:"node_one@light-boy", func)
	​ 	#PID<0.57.0>
	​ 	node_one@light-boy
	​ 	iex(node_one@light-boy)> Node.spawn(:"node_two@light-boy", func)
	​ 	#PID<7393.48.0>
	​ 	node_two@light-boy

We’re running on node one. When we tell spawn to run on
node_one@light-boy, we see two lines of output. The first is the PID
spawn returns, and the second is the value of Node.self
that the function writes.

The second spawn is where it gets interesting. We pass it the name
of node two and the same function we used the first time. Again we get
two lines of output. The first is the PID and the second is the node
name. Notice the PID’s contents. The first field in a PID is the node
number. When running on a local node, it’s zero. But here we’re
running on a remote node, so that field has a positive value
(7393). Then look at the function’s output. It reports that it is
running on node two. I think that’s pretty cool.

You may have been expecting the output from the second spawn to
appear in the lower window. After all, the code runs on node two. But
it was created on node one, so it inherits its process hierarchy
from node one. Part of that hierarchy is something called the group
leader, which (among other things) determines where IO.puts sends
its output. So in a way, what we’re seeing is doubly impressive. We
start on node one, run a process on node two, and when the process
outputs something, it appears back on node one.

Your Turn
	Exercise: Nodes-1

Set up two terminal windows, and go to a different directory in
each. Then start up a named node in each. In one window, write
a function that lists the contents of the current
directory.
	​ 	fun = ​fn​ -> IO.puts(Enum.join(File.ls!, ​"​​,"​)) ​end​

Run it twice, once on each node.

Nodes, Cookies, and Security

Although this is cool, it might also ring some alarm bells. If
you can run arbitrary code on any node, then anyone with a publicly
accessible node has just handed over his machine to any random
hacker.

But that’s not the case. Before a node will let another connect, it
checks that the remote node has permission. It does that by comparing
that node’s cookie with its own cookie. A cookie is just an
arbitrary string (ideally fairly long and very random). As an
administrator of a distributed Elixir system, you need to create a
cookie and then make sure all nodes use it.

If you are running the iex or elixir commands, you can pass in the
cookie using the --cookie option.
	​ 	​$ ​​iex​​ ​​--sname​​ ​​one​​ ​​--cookie​​ ​​chocolate-chip​
	​ 	iex(one@light-boy)> Node.get_cookie
	​ 	:"chocolate-chip"

If we repeat our two-node experiment and explicitly set the cookie
names to be different, what happens?
	Window #1

	

	​ 	$ iex --sname node_one --cookie cookie-one
	​ 	iex(node_one@light-boy)> Node.connect :"node_two@light-boy"
	​ 	false

	Window #2

	

	​ 	$ iex --sname node_two --cookie cookie-two
	​ 	iex(node_two@light-boy)>
	​ 	=ERROR REPORT==== 27-Apr-2013::21:27:43 ===
	​ 	​**​ Connection attempt from disallowed node 'node_one@light-boy' ​**​

The node that attempts to connect receives false, indicating the
connection was not made. And the node that it tried to connect to logs
an error describing the attempt.

But why does it succeed when we don’t specify a cookie? When Erlang
starts, it looks for an .erlang.cookie file in your home directory. If that file doesn’t exist, Erlang creates it and stores a
random string in it. It uses that string as the cookie for any node
the user starts. That way, all nodes you start on a particular
machine are automatically given access to each other.

Be careful when connecting nodes over a public network—the cookie is
transmitted in plain text.

Naming Your Processes

Although a PID is displayed as three numbers, it contains just two
fields; the first number is the node ID and the next two numbers are
the low and high bits of the process ID. When you run a process on
your current node, its node ID will always be zero. However, when you
export a PID to another node, the node ID is set to the number of the
node on which the process lives.

That works well once a system is up and running and everything is
knitted together. If you want to register a callback process on one
node and an event-generating process on another, just give the
callback PID to the generator.

But how can the callback find the generator in the first place? One
way is for the generator to register its PID, giving it a name. The
callback on the other node can look up the generator by name, using the
PID that comes back to send messages to it.

Here’s an example. Let’s write a simple server that sends a
notification about every 2 seconds. To receive the notification, a
client has to register with the server. And we’ll arrange things so
that clients on different nodes can register.

While we’re at it, we’ll do a little packaging so that to start the
server you run Ticker.start, and to start the client you run
Client.start. We’ll also add an API Ticker.register to register a
client with the server.

Here’s the server code:
nodes/ticker.ex
	​ 	​defmodule​ Ticker ​do​
	​ 	
	​ 	 @interval 2000 ​# 2 seconds​
	​ 	 @name ​:ticker​
	​ 	
	​ 	 ​def​ start ​do​
	​ 	 pid = spawn(__MODULE__, ​:generator​, [[]])
	​ 	 ​:global​.register_name(@name, pid)
	​ 	 ​end​

	​ 	 ​def​ register(client_pid) ​do​
	​ 	 send ​:global​.whereis_name(@name), { ​:register​, client_pid }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ generator(clients) ​do​
	​ 	 ​receive​ ​do​
	​ 	 { ​:register​, pid } ->
	​ 	 IO.puts ​"​​registering ​​#{​inspect pid​}​​"​
	​ 	 generator([pid|clients])
	​ 	 ​after​
	​ 	 @interval ->
	​ 	 IO.puts ​"​​tick"​
	​ 	 Enum.each clients, ​fn​ client ->
	​ 	 send client, { ​:tick​ }
	​ 	 ​end​
	​ 	 generator(clients)
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

We define a start function that spawns
the server process. It then uses :global.register_name to register
the PID of this server under the name :ticker.

Clients who want to register to
receive ticks call the register function. This function sends a message to the Ticker server,
asking it to add those clients to its list. Clients could have done this
directly by sending the :register message to the server
process. Instead, we give them an interface function that hides the
registration details. This helps decouple the client from the
server and gives us more flexibility to change things in the future.

Before we look at the actual tick process, let’s stop to consider the
start and register functions. These are not part of the tick
process—they are simply chunks of code in the Ticker module. This
means they can be called directly wherever we have the module
loaded—no message passing required. This is a common
pattern; we have a module that is responsible both for spawning a
process and for providing the external interface to that process.

Back to the code. The last function, generator, is the spawned
process. It waits for two events. When it gets a tuple containing
:register and a PID, it adds the PID to the list of clients and
recurses. Alternatively, it may time out after 2 seconds, in which
case it sends a {:tick} message to all registered clients.

(This code has no error handling and no means of terminating the
process. I just wanted to illustrate passing PIDs and messages between
nodes.)
The client code is simple:
nodes/ticker.ex
	​ 	​defmodule​ Client ​do​
	​ 	
	​ 	 ​def​ start ​do​
	​ 	 pid = spawn(__MODULE__, ​:receiver​, [])
	​ 	 Ticker.register(pid)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ receiver ​do​
	​ 	 ​receive​ ​do​
	​ 	 { ​:tick​ } ->
	​ 	 IO.puts ​"​​tock in client"​
	​ 	 receiver()
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

It spawns a receiver to handle the incoming
ticks, and passes the receiver’s PID to the server as an argument
to the register function. Again, it’s worth noting that this
function call is local—it runs on the same node as the
client. However, inside the Ticker.register function, it locates the
node containing the server and sends it a message. As our client’s PID is sent to the server, it becomes an external PID, pointing
back to the client’s node.

The spawned client process simply loops,
writing a cheery message to the console whenever it receives a tick message.

Let’s run it. We’ll start up our two nodes. We’ll call
Ticker.start on node one. Then we’ll call Client.start on both
node one and node two.
	Window #1

	

	​ 	nodes % iex --sname one
	​ 	iex(one@light-boy)> c("ticker.ex")
	​ 	[Client,Ticker]
	​ 	iex(one@light-boy)> Node.connect :"two@light-boy"
	​ 	true
	​ 	iex(one@light-boy)> Ticker.start
	​ 	:yes
	​ 	tick
	​ 	tick
	​ 	iex(one@light-boy)> Client.start
	​ 	registering #PID<0.59.0>
	​ 	{:register,#PID<0.59.0>}
	​ 	tick
	​ 	tock in client
	​ 	tick
	​ 	tock in client
	​ 	tick
	​ 	tock in client
	​ 	tick
	​ 	tock in client
	​ 	 : : :

	Window #2

	

	​ 	nodes % iex --sname two
	​ 	iex(two@light-boy)> c("ticker.ex")
	​ 	[Client,Ticker]
	​ 	iex(two@light-boy)> Client.start
	​ 	{:register,#PID<0.53.0>}
	​ 	tock in client
	​ 	tock in client
	​ 	tock in client
	​ 	 : : :

To stop this, you’ll need to exit IEx on both nodes.
When to Name Processes

When you name something, you are recording some global state. And as
we all know, global state can be troublesome. What if two processes
try to register the same name, for example?

The runtime has some tricks to help us. In particular, we
can list the names our application will register in the app’s
mix.exs file. (We’ll cover how when we look at packaging an application.) However, the
general rule is to register your process names when your application
starts.

Your Turn
	Exercise: Nodes-2

When I introduced the interval server, I said it sent a tick “about
every 2 seconds.” But in the receive loop, it has an explicit
timeout of 2,000 ms. Why did I say “about” when it looks as if the
time should be pretty accurate?

	Exercise: Nodes-3

Alter the code so that successive ticks are sent to each registered
client (so the first goes to the first client, the second to the next
client, and so on). Once the last client receives a tick, the process starts
back at the first. The solution should deal with new clients being
added at any time.

Input, Output, PIDs, and Nodes

Input and output in the Erlang VM are performed using I/O
servers. These are simply Erlang processes that implement a low-level
message interface. You never have to deal with this interface directly
(which is a good thing, as it is complex). Instead, you use the
various Elixir and Erlang I/O libraries and let them do the heavy
lifting.

In Elixir you identify an open file or device by the PID of its I/O
server. And these PIDs behave like all other PIDs—you can, for
example, send them between nodes.
If you look at the implementation of Elixir’s IO.puts
function, you’ll see

	​ 	​def​ puts(device \\ group_leader(), item) ​do​
	​ 	 erl_dev = map_dev(device)
	​ 	 ​:io​.put_chars erl_dev, [to_iodata(item), ​?​\n]
	​ 	​end​

(To see the source of an Elixir library module, view the
 online documentation at
 http://elixir-lang.org/docs/, navigate
 to the function in question, and click the Source link.)

The default device it uses is returned by the function :erlang.group_leader.
(The group_leader function is imported from the :erlang module at
the top of the IO module.) This will be the PID of an I/O server.

So, bring up two terminal windows and start a different named node in
each. Connect to node one from node two, and register the PID returned
by group_leader under a global name (we use :two).
	Window #1

	

	​ 	$ iex --sname one
	​ 	iex(one@light-boy) >

	Window #2

	

	​ 	$ iex --sname two
	​ 	iex(two@light-boy) > Node.connect(:"one@light-boy")
	​ 	true
	​ 	iex(two@light-boy) > :global.register_name(:two, :erlang.group_leader)
	​ 	:yes

Note that once we’ve registered the PID, we can access it from the other
node. And once we’ve done that, we can pass it to IO.puts; the
output appears in the other terminal window.

	Window #1

	

	​ 	iex(one@light-boy) > two = :global.whereis_name :two
	​ 	#PID<7419.30.0>
	​ 	iex(one@light-boy) > IO.puts(two, "Hello")
	​ 	:ok
	​ 	iex(one@light-boy) > IO.puts(two, "World!")
	​ 	:ok

	Window #2

	

	​ 	Hello
	​ 	World
	​ 	iex(two@light-boy) >

Your Turn
	Exercise: Nodes-4

The ticker process in this chapter is a central server that sends
events to registered clients. Reimplement this as a ring of
clients. A client sends a tick to the next client in the ring. After
2 seconds, that client sends a tick to its next client.

When thinking about how to add clients to the ring, remember to deal
with the case where a client’s receive loop times out just as you’re
adding a new process. What does this say about who has to be
responsible for updating the links?

Nodes Are the Basis of Distribution

We’ve seen how we can create and interlink a number of Erlang virtual
machines, potentially communicating across a network. This is
important, both to allow your application to scale and to
increase reliability. Running all your code on one machine is like
having all your eggs in one basket. Unless you’re writing a mobile
omelet app, this is probably not a good idea.

It’s easy to write concurrent applications with Elixir. But writing
code that follows the happy path is a lot easier than writing
bullet-proof, scalable, and hot-swappable world-beating apps. For
that, you’re going to need some help.

In the worlds of Elixir and Erlang, that help is called OTP, and it is
the subject of the next few chapters.

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 17
OTP: Servers

If you’ve been following Elixir or Erlang, you’ve probably come
across OTP. It is often hyped as the answer to all high-availability distributed-application woes. It isn’t, but it certainly solves many
problems that you’d otherwise need to solve yourself, including
application discovery, failure detection and management, hot code
swapping, and server structure.

First, the obligatory one-paragraph history. OTP stands for the Open
Telecom Platform, but the full name is largely of historical
interest and everyone just says OTP. It was initially used to build
telephone exchanges and switches. But these devices have the same
characteristics we want from any large online application, so OTP is
now a general-purpose tool for developing and managing large systems.

OTP is actually a bundle that includes Erlang, a database (wonderfully
called Mnesia), and an innumerable number of libraries. It also
defines a structure for your applications. But, as with all large,
complex frameworks, there is a lot to learn. In this book we’ll
focus on the essentials and I’ll point you toward other information sources.

We’ve been using OTP all along—mix, the Elixir compiler, and even our
issue tracker followed OTP conventions. But that use was implicit. Now
we’ll make it explicit and start writing servers using OTP.

Some OTP Definitions

OTP defines systems in terms of hierarchies of applications. An
application consists of one or more processes. These processes follow
one of a small number of OTP conventions, called behaviors. There is a behavior used for general-purpose servers,
one for implementing event handlers, and one for finite-state
machines. Each implementation of one of these behaviors will run in
its own process (and may have additional associated processes). In
this chapter we’ll be implementing the server behavior, called
GenServer.

A special behavior, called supervisor, monitors the
health of these processes and implements strategies for restarting them
if needed.

We’ll take a look at these components from the bottom up—this chapter
will cover servers, the next will explore supervisors, and
finally we’ll implement applications.

An OTP Server

When we wrote our Fibonacci server in the previous chapter,, we had to do all the
message handling ourselves. It wasn’t difficult, but it was
tedious. Our scheduler also had to keep track of three pieces of state
information: the queue of numbers to process, the results generated so
far, and the list of active PIDs.

Most servers have a similar set of needs, so OTP
provides libraries that do all the low-level work for us.

When we write an OTP server, we write a module containing one or
more callback functions with standard names. OTP will invoke the
appropriate callback to handle a particular situation. For example,
when someone sends a request to our server, OTP will call our
handle_call function, passing in the request, the caller, and the
current server state. Our function responds by returning a tuple
containing an action to take, the return value for the request, and an
updated state.
State and the Single Server

Think back to our recursive Fibonacci code. Where did it keep all the
intermediate results as it worked? It passed them to itself,
recursively, as parameters. In fact, all three of its parameters were
used for state information.

Now think about servers. They use recursion to loop, handling one
request on each call. So they can also pass state to themselves as a
parameter in this recursive call. And that’s one of the things OTP
manages for us. Our handler functions get passed the current state (as
their last parameter), and they return (among other things) a
potentially updated state. Whatever state a function returns is the
state that will be passed to the next request handler.
Our First OTP Server

Let’s write what is possibly the simplest OTP server. You pass it a
number when you start it up, and that becomes the current state of the
server. When you call it with a :next_number request, it returns
that current state to the caller, and at the same time increments the
state, ready for the next call. Basically, each time you call it you
get an updated sequence number.
Create a New Project Using Mix

Start by creating a new mix project in your work directory. We’ll call
it sequence.
	​ 	​$ ​​mix​​ ​​new​​ ​​sequence​
	​ 	* creating README.md
	​ 	* creating .formatter.exs
	​ 	* creating .gitignore
	​ 	* creating mix.exs
	​ 	* creating config
	​ 	* creating config/config.exs
	​ 	* creating lib
	​ 	* creating lib/sequence.ex
	​ 	* creating test
	​ 	* creating test/test_helper.exs
	​ 	* creating test/sequence_test.exs

Create the Basic Sequence Server

Now we’ll create Sequence.Server, our server module. Move into the
sequence directory, and create a subdirectory under lib/ also
called sequence.
	​ 	​$ ​​cd​​ ​​sequence​
	​ 	​$ ​​mkdir​​ ​​lib/sequence​

Add
the file server.ex to lib/sequence/:
otp-server/1/sequence/lib/sequence/server.ex
	​1: 	​defmodule​ Sequence.Server ​do​
	​- 	 ​use​ GenServer
	​- 	
	​- 	 ​def​ init(initial_number) ​do​
	​5: 	 { ​:ok​, initial_number }
	​- 	 ​end​
	​- 	
	​- 	 ​def​ handle_call(​:next_number​, _from, current_number) ​do​
	​- 	 {​:reply​, current_number, current_number + 1}
	​10: 	 ​end​
	​- 	​end​

The first thing to note is line 2. The
use line effectively adds the OTP GenServer behavior to our module. This
is what lets it handle all the callbacks. It also means we don’t have
to define every callback in our module—the behavior defines defaults
for all but one of them.

The exception is the init/1 function, defined on line 4. You can think of init as being like the
constructor in an object-oriented language: A constructor takes values
and creates the object’s initial state, and init takes some initial
value and uses it to construct the state of the server. This state is
returned as the second element of the {:ok, state} tuple. In our
case, we use the init function to set the initial value of our
counter.

When a client calls our server, GenServer invokes its handle_call
function. This function receives three parameters:
	The information the client passed to the call
	The PID of the client
	The server state

Your implementation of the function should perform the actions associated with the first parameter, and may update the state (the third parameter). When the handle_call function exits, it must return the state (updated or not).

The initial state of a GenServer is set by the return value of the init function.

Our implementation is simple: we return a tuple to OTP.
	​ 	{ ​:reply​, current_number, current_number+1 }

The reply element tells OTP to reply to the client, passing back the
value that is the second element. Finally, the tuple’s third element
defines the new state. This will be passed as the last parameter to
handle_call the next time it is invoked.
Fire Up Our Server Manually

We can play with our server in IEx. Open it in the project’s main
directory, remembering the -S mix option.
	​ 	$ iex -S mix
	​ 	​iex>​ { ​:ok​, pid } = GenServer.start_link(Sequence.Server, 100)
	​ 	{:ok,#PID<0.71.0>}
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	100
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	101
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	102

We’re using two functions from the Elixir GenServer module. The
start_link function behaves like the spawn_link function we used
in the previous chapter. It asks GenServer to start a new process
and link to us (so we’ll get notifications if it fails). We pass in
the module to run as a server: the initial state (100 in this
case). We could also pass GenServer options as a third parameter,
but the defaults work fine here.

We get back a status (:ok) and the server’s PID.
The call function takes this PID and calls the handle_call function
in the server. The call’s second parameter is passed as the
first argument to handle_call.

In our case, the only value we need to pass is the identity of the
action we want to perform, :next_number. If you look at the
definition of handle_call in the server, you’ll see that its first
parameter is :next_number. When Elixir invokes the function, it
pattern-matches the argument in the call with this first parameter in
the function. A server can support multiple actions by implementing
multiple handle_call functions with different first parameters.

If you want to pass more than one thing in the call to a server, pass
a tuple. For example, our server might need a function to reset the
count to a given value. We could define the handler as
	​ 	​def​ handle_call({​:set_number​, new_number}, _from, _current_number) ​do​
	​ 	 { ​:reply​, new_number, new_number }
	​ 	​end​

and call it with
	​ 	​iex>​ GenServer.call(pid, {​:set_number​, 999})
	​ 	999

Similarly, a handler can return multiple values by packaging them into
a tuple or list.

	​ 	​def​ handle_call({​:factors​, number}, _, _) ​do​
	​ 	 { ​:reply​, { ​:factors_of​, number, factors(number)}, [] }
	​ 	​end​

Your Turn
	Exercise: OTP-Servers-1

You’re going to start creating a server that implements a stack. The
call that initializes your stack will pass in a list of the
initial stack contents.

For now, implement only the pop interface. It’s acceptable for
your server to crash if someone tries to pop from an empty stack.

For example, if initialized with [5,"cat",9], successive calls to
pop will return 5, "cat", and 9.

One-Way Calls

The call function calls a server and waits for a reply. But
sometimes you won’t want to wait because there is no reply coming
back. In those circumstances, use the GenServer cast
function. (Think of it as casting your request into the sea of
servers.)

Just like call is passed to handle_call in the server, cast is
sent to handle_cast. Because there’s no response possible, the
handle_cast function takes only two parameters: the call argument
and the current state. And because it doesn’t want to send a reply,
it will return the tuple {:noreply, new_state}.

Let’s modify our sequence server to support an :increment_number
function. We’ll treat this as a cast, so it simply sets the new state
and returns.
otp-server/1/sequence/lib/sequence/server.ex
	​ 	​defmodule​ Sequence.Server ​do​
	​ 	 ​use​ GenServer
	​ 	
	​ 	 ​def​ init(initial_number) ​do​
	​ 	 { ​:ok​, initial_number }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_call(​:next_number​, _from, current_number) ​do​
	​ 	 {​:reply​, current_number, current_number + 1}
	​ 	 ​end​
	​ 	
	»	 ​def​ handle_cast({​:increment_number​, delta}, current_number) ​do​
	»	 { ​:noreply​, current_number + delta}
	»	 ​end​
	​ 	​end​

Notice that the cast handler takes a tuple as its first parameter. The
first element is :increment_number, and is used by pattern matching
to select the handlers to run. The second element of the tuple is the
delta to add to our state. The function simply returns a tuple, where
the state is the previous state plus this number.

To call this from our IEx session, we first have to recompile our
source. The r command takes a module name and recompiles the file
containing that module.
	​ 	​iex>​ r Sequence.Server
	​ 	.../sequence/lib/sequence/server.ex:2: redefining module Sequence.Server
	​ 	{Sequence.Server,[Sequence.Server]]

Even though we’ve recompiled the code, the old version is still
running. The VM doesn’t hot-swap code until you explicitly access it by
module name. So, to try our new functionality we’ll create a
new server. When it starts, it will pick up the latest version of the
code.
	​ 	​iex>​ { ​:ok​, pid } = GenServer.start_link(Sequence.Server, 100)
	​ 	{:ok,#PID<0.60.0>}
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	100
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	101
	​ 	​iex>​ GenServer.cast(pid, {​:increment_number​, 200})
	​ 	:ok
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	302

Tracing a Server’s Execution

The third parameter to start_link is a set of options. A useful one
during development is the debug trace, which logs message activity to
the console.

We enable tracing using the debug option:
	»	​iex>​ {​:ok​,pid} = GenServer.start_link(Sequence.Server, 100, [​debug:​ [​:trace​]])
	​ 	{:ok,#PID<0.68.0>}
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	​*​DBG​*​ <0.68.0> got call next_number from <0.25.0>
	​ 	​*​DBG​*​ <0.68.0> sent 100 to <0.25.0>, new state 101
	​ 	100
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	​*​DBG​*​ <0.68.0> got call next_number from <0.25.0>
	​ 	​*​DBG​*​ <0.68.0> sent 101 to <0.25.0>, new state 102
	​ 	101

See how it traces the incoming call and the response we send back. A
nice touch is that it also shows the next state.

We can also include
:statistics in the debug list to ask a server to keep some basic statistics:
	»	​iex>​ {​:ok​,pid} = GenServer.start_link(Sequence.Server, 100, [​debug:​ [​:statistics​]])
	​ 	{:ok,#PID<0.69.0>}
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	100
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	101
	​ 	​iex>​ ​:sys​.statistics pid, ​:get​
	​ 	{:ok,
	​ 	 [
	​ 	 start_time: {{2017, 12, 23}, {14, 6, 7}},
	​ 	 current_time: {{2017, 12, 23}, {14, 6, 24}},
	​ 	 reductions: 36,
	​ 	 messages_in: 2,
	​ 	 messages_out: 0
	​]}

Most of the fields should be fairly obvious. Timestamps are given as
{{y,m,d},{h,m,s}} tuples. The reductions value is a measure of
the amount of work the server does. It is used in process
scheduling as a way of making sure all processes get a fair share of
the available CPU.

The Erlang sys module is your interface to the world of system
messages. These are sent in the background between processes—they’re
a bit like the backchatter in a multiplayer video game. While two
players are engaged in an attack (their real work), they can also be
sending each other background messages: “Where are you?,” “Stop
moving,” and so on.

The list associated with the debug parameter you give to GenServer
is simply the names of functions to call in the sys module. If you
say [debug: [:trace, :statistics]], then those functions will be
called in sys, passing in the server’s PID. Look at the
documentation for sys to see what’s available.[34]

This also means you can turn things on and off after you have
started a server. For example, you can enable tracing on an existing
server using the following:
	​ 	​iex>​ ​:sys​.trace pid, true
	​ 	:ok
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	​*​DBG​*​ <0.69.0> got call next_number from <0.25.0>
	​ 	​*​DBG​*​ <0.69.0> sent 105 to <0.25.0>, new state 106
	​ 	105
	​ 	​iex>​ ​:sys​.trace pid, false
	​ 	:ok
	​ 	​iex>​ GenServer.call(pid, ​:next_number​)
	​ 	106

get_status is another useful sys function:
	​ 	​iex>​ ​:sys​.get_status pid
	​ 	{:status, #PID<0.134.0>, {:module, :gen_server},
	​ 	 [
	​ 	 [
	​ 	 "$initial_call": {Sequence.Server, :init, 1},
	​ 	 "$ancestors": [#PID<0.118.0>, #PID<0.57.0>]
	​],
	​ 	 :running,
	​ 	 #PID<0.118.0>,
	​ 	 [statistics: {{{2017, 12, 23}, {14, 11, 13}}, {:reductions, 14}, 3, 0},
	​ 	 [
	​ 	 header: 'Status for generic server <0.134.0>',
	​ 	 data: [
	​ 	 {'Status', :running},
	​ 	 {'Parent', #PID<0.118.0>},
	​ 	 {'Logged events', []}
	​],
	​ 	 data: [{'State', 103}]
	​]

This is the default formatting of the status message GenServer
provides. You have the option to change the data: part to a more
application-specific message by defining a format_status function.
This receives an option describing why the function was called, as
well as a list containing the server’s process dictionary and the
current state. (Note that in the code that follows, the string State
in the response is in single quotes.)
otp-server/1/sequence/lib/sequence/server.ex
	​ 	​def​ format_status(_reason, [_pdict, state]) ​do​
	​ 	 [​data:​ [{​'State'​, ​"​​My current state is '​​#{​inspect state​}​​', and I'm happy"​}]]
	​ 	​end​

If we ask for the status in IEx, we get the new message (after
restarting the server):
	​ 	​iex>​ ​:sys​.get_status pid
	​ 	{:status, #PID<0.124.0>, {:module, :gen_server},
	​ 	 [
	​ 	 [
	​ 	 "$initial_call": {Sequence.Server, :init, 1},
	​ 	 "$ancestors": [#PID<0.118.0>, #PID<0.57.0>]
	​],
	​ 	 :running,
	​ 	 #PID<0.118.0>,
	​ 	 [statistics: {{{2017, 12, 23}, {14, 6, 7}}, {:reductions, 14}, 2, 0}],
	​ 	 [
	​ 	 header: 'Status for generic server <0.124.0>',
	​ 	 data: [
	​ 	 {'Status', :running},
	​ 	 {'Parent', #PID<0.118.0>},
	​ 	 {'Logged events', []}
	​],
	​ 	 data: [{'State', "My current state is '102', and I'm happy"}]
	​]
	​]}

Your Turn
	Exercise: OTP-Servers-2

Extend your stack server with a push interface that adds a single
value to the top of the stack. This will be implemented as a cast.

Experiment in IEx with pushing and popping values.

GenServer Callbacks

GenServer is an OTP protocol. OTP works by assuming that your module
defines a number of callback functions (six, in the case of a
GenServer). If you were writing a GenServer in Erlang, your code would
have to contain implementations of all six.

When you add the line ‘use GenServer‘ to a module, Elixir creates
default implementations of these six callback functions. All we have to
do is override the ones where we add our own application-specific
behavior. Our examples so far have used the three callbacks ‘init‘,
‘handle_call‘, and ‘handle_cast‘. Here’s a full list:
	init(start_arguments)
	
Called by GenServer when starting a new server. The parameter is the
second argument passed to start_link. It should return {:ok, state}
on success, or {:stop, reason} if the server could not be started.

	
You can specify an optional timeout using {:ok, state, timeout},
in which case GenServer sends the process a :timeout message
whenever no message is received in a span of timeout ms. (The
message is passed to the handle_info function.)

	
The default GenServer implementation sets
the server state to the argument you pass.

	handle_call(request, from, state)
	
Invoked when a client uses GenServer.call(pid, request). The
from parameter is a tuple containing the PID of the client and a
unique tag. The state parameter is the server state.

	
On success it returns {:reply, result, new_state}. The list that follows
this one,, shows other valid responses.

	
The default implementation stops the server with a :bad_call
error, so you’ll need to implement handle_call for every call
request type your server implements.

	handle_cast(request, state)
	
Called in response to GenServer.cast(pid, request).

	
A successful response is {:noreply, new_state}. It can also return
{:stop, reason, new_state}.

	
The default implementation stops the server with a :bad_cast
error.

	handle_info(info, state)
	
Called to handle incoming messages that are not call or cast
requests. For example, timeout messages are handled here. So are
termination messages from any linked processes. In addition,
messages sent to the PID using send (so they bypass GenServer) will
be routed to this function.

	terminate(reason, state)
	
Called when the server is about to be terminated. However, as we’ll
discuss in the next chapter, once we add supervision to our servers, we
don’t have to worry about this.

	code_change(from_version, state, extra)
	
Updates a running server without
stopping the system. However, the new version of the server may
represent its state differently from the old version. The code_change
callback is invoked to change from the old state format to the new.

	format_status(reason, [pdict, state])
	
Used to customize the state display of the server. The conventional
response is [data: [{’State’, state_info}]].

The call and cast handlers return standardized
responses. Some of these responses can contain an optional
:hibernate or timeout parameter. If hibernate is returned, the
server state is removed from memory but is recovered on the next
request. This saves memory at the expense of some CPU. The timeout
option can be the atom :infinite (which is the default) or a
number. If the latter, a :timeout message is sent if the server is
idle for the specified number of milliseconds.

The first two responses are common between call and cast.

{ :noreply, new_state [, :hibernate | timeout] }
	{ :stop, reason, new_state }
	
Signal that the server is to terminate.

Only handle_call can use the last two.

	{ :reply, response, new_state [, :hibernate | timeout] }
	
Send response to the client.

	{ :stop, reason, reply, new_state }
	
Send the response and signal that the server is to terminate.

Naming a Process

The idea of referencing processes by their PIDs gets old
quickly. Fortunately, there are a number of alternatives.

The simplest is local naming. We assign a name that is unique for all
OTP processes on our node, and then we use that name instead of the
PID whenever we reference it. To create a locally named process, we
use the name: option when we start the server:
	»	​iex>​ { ​:ok​, pid } = GenServer.start_link(Sequence.Server, 100, ​name:​ ​:seq​)
	​ 	{:ok,#PID<0.58.0>}
	​ 	​iex>​ GenServer.call(​:seq​, ​:next_number​)
	​ 	100
	​ 	​iex>​ GenServer.call(​:seq​, ​:next_number​)
	​ 	101
	​ 	​iex>​ ​:sys​.get_status ​:seq​
	​ 	{:status, #PID<0.69.0>, {:module, :gen_server},
	​ 	 [["$ancestors": [#PID<0.58.0>],
	​ 	 "$initial_call": {Sequence.Server, :init, 1}],
	​ 	 :running, #PID<0.58.0>, [],
	​ 	 [header: 'Status for generic server seq',
	​ 	 data: [{'Status', :running},
	​ 	 {'Parent', #PID<0.58.0>},
	​ 	 {'Logged events', []}],
	​ 	 data: [{'State', "My current state is '102', and I'm happy"}]]]}

Tidying Up the Interface

As we left it, our server works but is ugly to use. Our callers
have to make explicit GenServer calls, and they have to know the
registered name for our server process. We can do better. Let’s wrap
this interface in a set of three functions in our server module:
start_link, next_number, and increment_number. The first of
these calls the GenServer start_link method. As we’ll see in the next chapter, the name start_link
is a convention. start_link must return the correct status values to
OTP; as our code simply delegates to the GenServer module, this
is taken care of.

Following the definition of start_link, the next two functions are
the external API to issue call and cast requests to the running server
process.

We’ll also use the name of the module as our server’s registered local name (hence the name: __MODULE__ when we start it, and the
__MODULE__ parameter when we use call or cast).
otp-server/2/sequence/lib/sequence/server.ex
	​ 	​defmodule​ Sequence.Server ​do​
	​ 	 ​use​ GenServer
	​ 	
	​ 	 ​#####​
	​ 	 ​# External API​
	​ 	
	»	 ​def​ start_link(current_number) ​do​
	​ 	 GenServer.start_link(__MODULE__, current_number, ​name:​ __MODULE__)
	​ 	 ​end​
	​ 	
	»	 ​def​ next_number ​do​
	​ 	 GenServer.call __MODULE__, ​:next_number​
	​ 	 ​end​
	​ 	
	»	 ​def​ increment_number(delta) ​do​
	​ 	 GenServer.cast __MODULE__, {​:increment_number​, delta}
	​ 	 ​end​
	​ 	
	​ 	 ​#####​
	​ 	 ​# GenServer implementation​
	​ 	
	​ 	 ​def​ init(initial_number) ​do​
	​ 	 { ​:ok​, initial_number }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_call(​:next_number​, _from, current_number) ​do​
	​ 	 { ​:reply​, current_number, current_number+1 }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_cast({​:increment_number​, delta}, current_number) ​do​
	​ 	 { ​:noreply​, current_number + delta}
	​ 	 ​end​
	​ 	
	​ 	 ​def​ format_status(_reason, [_pdict, state]) ​do​
	​ 	 [​data:​ [{​'State'​, ​"​​My current state is '​​#{​inspect state​}​​', and I'm happy"​}]]
	​ 	 ​end​
	​ 	​end​

When we run this code in IEx, it’s a lot cleaner:
	​ 	$ iex -S mix
	​ 	​iex>​ Sequence.Server.start_link 123
	​ 	{:ok,#PID<0.57.0>}
	​ 	​iex>​ Sequence.Server.next_number
	​ 	123
	​ 	​iex>​ Sequence.Server.next_number
	​ 	124
	​ 	​iex>​ Sequence.Server.increment_number 100
	​ 	:ok
	​ 	​iex>​ Sequence.Server.next_number
	​ 	225

This is the pattern that just about everyone uses in the Elixir world.

I have a different view. However, it certainly isn’t mainstream,
so feel free to skip the next section if you want to avoid becoming
tainted by my heresies.

Making Our Server into a Component

Earlier I said that what Elixir calls an application, most people
would call a component or a service. That’s certainly what our
sequence server is: a freestanding chunk of code that enjoyed
generating successive numbers.

Despite being the canonical way of writing this, I don’t like my
implementation. It puts three things into a single source file:
	The API
	The logic of our service (adding one)
	The implementation of that logic in a server

Have another look at the code here. If you didn’t
know what it did, how would you find out? Where’s the code that does
the component’s logic?
(The image gives you a hint.) It isn’t obvious, and this is just a
trivial service. Imagine working with a really complex one, with lots
of logic.

That’s why I’m experimenting with splitting the API, implementation,
and server into three separate files.

We’ll start afresh:
	​ 	​$ ​​mix​​ ​​new​​ ​​sequence​
	​ 	​$ ​​cd​​ ​​sequence​
	​ 	​$ ​​mkdir​​ ​​lib/sequence​
	​ 	​$ ​​touch​​ ​​lib/sequence/impl.ex​​ ​​lib/sequence/server.ex​
	​ 	​$ ​​tree​
	​ 	├── README.md
	​ 	├── config
	​ 	│ └── config.exs
	​ 	├── lib
	​ 	│ ├── sequence
	​ 	│ │ ├── impl.ex
	​ 	│ │ └── server.ex
	​ 	│ └── sequence.ex
	​ 	├── mix.exs
	​ 	└── test
	​ 	 ├── sequence_test.exs
	​ 	 └── test_helper.exs

We’ll put the API in the top-level lib/sequence.ex module,
and the implementation and server in the two lower-level modules.

The API is the public face of our component. It is simply the top half
of the previous server module:
otp-server/3/sequence/lib/sequence.ex
	​ 	​defmodule​ Sequence ​do​
	​ 	
	​ 	 @server Sequence.Server
	​ 	
	​ 	 ​def​ start_link(current_number) ​do​
	​ 	 GenServer.start_link(@server, current_number, ​name:​ @server)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ next_number ​do​
	​ 	 GenServer.call(@server, ​:next_number​)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ increment_number(delta) ​do​
	​ 	 GenServer.cast(@server, {​:increment_number​, delta})
	​ 	 ​end​
	​ 	
	​ 	
	​ 	​end​

This forwards calls on to the server implementation:
otp-server/3/sequence/lib/sequence/server.ex
	​ 	​defmodule​ Sequence.Server ​do​
	​ 	 ​use​ GenServer
	​ 	 alias Sequence.Impl
	​ 	
	​ 	 ​def​ init(initial_number) ​do​
	​ 	 { ​:ok​, initial_number }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_call(​:next_number​, _from, current_number) ​do​
	​ 	 { ​:reply​, current_number, Impl.next(current_number) }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_cast({​:increment_number​, delta}, current_number) ​do​
	​ 	 { ​:noreply​, Impl.increment(current_number, delta) }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ format_status(_reason, [_pdict, state]) ​do​
	​ 	 [​data:​ [{​'State'​, ​"​​My current state is '​​#{​inspect state​}​​', and I'm happy"​}]]
	​ 	 ​end​
	​ 	​end​

Unlike the previous server, this code contains no “business logic”
(which in our case is adding either 1 or some delta to our state).
Instead, it uses the implementation module to do this:
otp-server/3/sequence/lib/sequence/impl.ex
	​ 	​defmodule​ Sequence.Impl ​do​
	​ 	
	​ 	 ​def​ next(number), ​do​: number + 1
	​ 	 ​def​ increment(number, delta), ​do​: number + delta
	​ 	
	​ 	​end​

Now, you’re probably looking at this and thinking, “all that work just
to implement a counter?” And you’d be right. But this chapter isn’t
about implementing a counter. It’s all about implementing real-world
servers. Because Elixir makes it easy to bundle all the code for a
server into one module, most people do, and then they end up with some
fairly highly coupled (and hard-to-test) code.

So think of this example, but with some real, complex business logic.
Imagine how you might write it.

You’d probably start with an API, just to see what it would look like.
Then you might want to write and test some of the business
logic. So go into the implementation module and do just that. What’s
more, test that code directly as you write it: no need to run it
inside a server for that.

As you progress with the implementation, you may learn things that
 require changes to the overall API. Feel free.

Then, when you’re feeling good about the code, add a server module
and have the API use it.

The thing I like about this approach is that it leaves me a pure
implementation of the actual logic on my component, independent of
whether I choose to deploy it as a server. I can use (and test)
the logic either as direct function calls or indirectly via a server.

Your Turn
	Exercise: OTP-Servers-3

Give your stack server process a name, and make sure it is accessible by that name in IEx.

	Exercise: OTP-Servers-4

Add the API to your stack module (the functions that wrap the GenServer calls).

	Exercise: OTP-Servers-5

Implement the terminate callback in your stack handler. Use
IO.puts to report the arguments it receives.

Try various ways of terminating your server. For example, popping an
empty stack will raise an exception. You might add code that calls
System.halt(n) if the push handler receives a number less than
10. (This will let you generate different return codes.) Use your
imagination to try different scenarios.

An OTP GenServer is just a regular Elixir process in which the message
handling has been abstracted out. The GenServer behavior defines a
message loop internally and maintains a state variable. That message
loop then calls out to various functions that we define in our
server module: handle_call, handle_cast, and so on.

We also saw that GenServer provides fairly detailed tracing of the
messages received and responses sent by our server modules.

Finally, we wrapped our message-based API in module functions, which
gives our users a cleaner interface and decouples them from our
implementation.

But we still have an issue if our server crashes. We’ll deal with this
in the next chapter, when we look at supervisors.

Footnotes

	[34]
	
http://www.erlang.org/documentation/doc-5.8.3/lib/stdlib-1.17.3/doc/html/sys.html

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 18
OTP: Supervisors

I’ve said it a few times now: the Elixir way says not to worry
much about code that crashes; instead, make sure the overall
application keeps running.

This might sound contradictory, but really it is not.

Think of a typical application. If an unhandled error causes an
exception to be raised, the application stops. Nothing else gets done
until it is restarted. If it’s a server handling multiple requests,
they all might be lost.

The issue here is that one error takes the whole application down.

But imagine that instead your application consists of hundreds or
thousands of processes, each handling just a small part of a
request. If one of those crashes, everything else carries on. You
might lose the work it’s doing, but you can design your
applications to minimize even that risk. And when that process gets
restarted, you’re back running at 100%.

In the Elixir and OTP worlds, supervisors perform all of this process monitoring and
restarting.

Supervisors and Workers

An Elixir supervisor has just one purpose—it manages one
or more processes. (As we’ll discuss later, these processes can be
workers or other supervisors.)

At its simplest, a supervisor is a process that uses the
OTP supervisor behavior. It is given a list of processes to
monitor and is told what to do if a process dies, and how to
prevent restart loops (when a process is restarted, dies, gets
restarted, dies, and so on).

To do this, the supervisor uses the Erlang VM’s process-linking and -monitoring
facilities. We talked about these when we covered spawn.

You can write supervisors as separate modules, but the Elixir style is
to include them inline. The easiest way to get started is to create
your project with the --sup flag. Let’s do this for our sequence
server.
	»	​$ ​​mix​​ ​​new​​ ​​--sup​​ ​​sequence​
	​ 	* creating README.md
	​ 	* creating .formatter.exs
	​ 	* creating .gitignore
	​ 	* creating mix.exs
	​ 	* creating config
	​ 	* creating config/config.exs
	​ 	* creating lib
	​ 	* creating lib/sequence.ex
	​ 	* creating lib/sequence/application.ex
	​ 	* creating test
	​ 	* creating test/test_helper.exs
	​ 	* creating test/sequence_test.exs

The only apparent difference is the appearance of the file
lib/sequence/application. Let’s have a look inside (I stripped out
some comments…):
	​ 	​defmodule​ Sequence.Application ​do​
	​ 	 @moduledoc false
	​ 	
	​ 	 ​use​ Application
	​ 	
	​ 	 ​def​ start(_type, _args) ​do​
	​ 	 children = [
	​ 	 ​# {Sequence.Worker, arg},​
	​]
	​ 	
	​ 	 opts = [​strategy:​ ​:one_for_one​, ​name:​ Sequence.Supervisor]
	​ 	 Supervisor.start_link(children, opts)
	​ 	 ​end​
	​ 	​end​

Our start function now creates a supervisor for our application. All
we need to do is tell it what we want supervised. Copy
the second version of the Sequence.Server module[35]
from the last chapter into the lib/sequence folder.
Then uncomment and change the line in the child_list to reference this module:
otp-supervisor/1/sequence/lib/sequence/application.ex
	​ 	​def​ start(_type, _args) ​do​
	​ 	 children = [
	»	 { Sequence.Server, 123},
	​]
	​ 	
	​ 	 opts = [​strategy:​ ​:one_for_one​, ​name:​ Sequence.Supervisor]
	​ 	 Supervisor.start_link(children, opts)
	​ 	​end​

Let’s look at what’s going to happen:

	
When our application starts, the start function is called.

	
It creates a list of child server modules. In our case, there’s
just one, the Sequence.Server. Along with the module name,
we specify an argument to be passed to the server when we start it.

	
We call Supervisor.start_link, passing it the list of child
specifications and a set of options. This creates a supervisor
process.

	
Now our supervisor process calls the start_link function for each
of its managed children. In our case, this is the function in
Sequence.Server. This code is unchanged—it calls
GenServer.start_link to create a GenServer process.

Now we’re up and running. Let’s try it:
	​ 	$ iex -S mix
	​ 	Compiling 2 files (.ex)
	​ 	Generated sequence app
	​ 	​iex>​ Sequence.Server.increment_number 3
	​ 	:ok
	​ 	​iex>​ Sequence.Server.next_number
	​ 	126

So far, so good. But the key thing with a supervisor is that it is
supposed to manage our worker process. If it dies, for example, we
want it to be restarted. Let’s try that. If we pass something that
isn’t a number to increment_number, the process should die trying to
add it to the current number.
	​ 	​iex(3)>​ Sequence.Server.increment_number ​"​​cat"​
	​ 	:ok
	​ 	​iex(4)>​ 14​:22:06​.269 [error] GenServer Sequence.Server terminating
	​ 	Last message: {:"$gen_cast", {:increment_number, "cat"}}
	​ 	State: [data: [{'State', "My current state is '127', and I'm happy"}]]
	​ 	​**​ (exit) an exception was raised:
	​ 	 ​**​ (ArithmeticError) bad argument in arithmetic expression
	​ 	 (sequence) lib/sequence/server.ex:27: Sequence.Server.handle_cast/2
	​ 	 (stdlib) gen_server.erl:599: :gen_server.handle_msg/5
	​ 	 (stdlib) proc_lib.erl:239: :proc_lib.init_p_do_apply/3
	​ 	​iex(4)>​ Sequence.Server.next_number
	​ 	123
	​ 	​iex(5)>​ Sequence.Server.next_number
	​ 	124

We get a wonderful error report that shows us the exception, along
with a stack trace from the process. We can also see the message we
sent that triggered the problem.

But when we then ask our server for a number, it responds as if
nothing had happened. The supervisor restarted our process for us.

This is excellent, but there’s a problem. The supervisor
restarted our sequence process with the initial
parameters we passed in, and the numbers started again from 123. A
reincarnated process has no memory of its past lives, and no state is
retained across a crash.

Your Turn
	Exercise: OTP-Supervisors-1

Add a supervisor to your stack application. Use IEx to make sure it
starts the server correctly. Use the server normally, and then crash
it (try popping from an empty stack). Did it restart? What were the
stack contents after the restart?

Managing Process State Across Restarts

Some servers are effectively stateless. If we had a server that
calculated the factors of numbers or responded to network
requests with the current time, we could simply restart it and let
it run.

But our server is not stateless—it needs to remember the current
number so it can generate an increasing sequence.

All of the approaches to this involve storing
the state outside of the process. Let’s choose a simple option—we’ll
write a separate process that can store and retrieve a
value. We’ll call it our stash. The sequence server can store its
current number in the stash whenever it terminates, and then we can
recover the number when we restart.

Now, we have to think about lifetimes. Our sequence server
should be fairly robust, but we’ve already found one thing that
crashes it. In actuarial terms, it isn’t the fittest process in
the scheduler queue. But our stash process must be more robust—it must
outlive the sequence server, at the very least.

We have to do two things to make this happen. First, we make it as
simple as possible. The fewer moving parts in a chunk of code, the
less likely it is to go wrong.

Second, we have to arrange things so that the supervisor isolates it
from failures in the sequence server.

Let’s do the first of these things now. We’ll create a trivial server
whose entire purpose is to store a single value.
otp-supervisor/2/sequence/lib/sequence/stash.ex
	​ 	​defmodule​ Sequence.Stash ​do​
	​ 	 ​use​ GenServer
	​ 	
	​ 	 @me __MODULE__
	​ 	
	​ 	 ​def​ start_link(initial_number) ​do​
	​ 	 GenServer.start_link(__MODULE__, initial_number, ​name:​ @me)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ get() ​do​
	​ 	 GenServer.call(@me, { ​:get​ })
	​ 	 ​end​
	​ 	
	​ 	 ​def​ update(new_number) ​do​
	​ 	 GenServer.cast(@me, { ​:update​, new_number })
	​ 	 ​end​
	​ 	
	​ 	 ​# Server implementation​
	​ 	
	​ 	 ​def​ init(initial_number) ​do​
	​ 	 { ​:ok​, initial_number }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_call({ ​:get​ }, _from, current_number) ​do​
	​ 	 { ​:reply​, current_number, current_number }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_cast({ ​:update​, new_number }, _current_number) ​do​
	​ 	 { ​:noreply​, new_number }
	​ 	 ​end​
	​ 	
	​ 	​end​

Now we want to supervise it. It’ll be running alongside the sequence
server:

This is the first time we’ve had two servers supervised together. So
now we have to face a question: what happens if just one of them
crashes? The answer depends on the supervision
strategy we have chosen.
	:one_for_one
	
if a server dies, the supervisor will restart it. This is the
default strategy.

	:one_for_all
	
if a server dies, all the remaining servers are first terminated,
and then the servers are all restarted.

	:rest_for_one
	
if a server dies, the servers that follow it in the list of children
are terminated, and then the dying server and those that were
terminated are restarted.

Right now we only have two servers. The stash server is supposed to be
eternal, while the sequence server might crash and need restarting.
Because of this, we know that we can’t use :one_for_all.

This leaves two choices, and both would work. If we use
:one_for_one, a failing sequence server will restart, and the stash
will not be affected. If we use :rest_for_one, the same thing will
happen, but only if the sequence server follows the stash in the list
of children.

Which to choose? I vote for :rest_for_one, not because it has any
different behavior to :one_for_one, but because I feel it expresses
my intent better. A :rest_for_one supervision strategy explicitly
says, “this server depends on the health of previous servers in the
list.”

Let’s add the stash and update the supervision strategy in our
supervisor startup code:
otp-supervisor/2/sequence/lib/sequence/application.ex
	​ 	​defmodule​ Sequence.Application ​do​
	​ 	 @moduledoc false
	​ 	
	​ 	 ​use​ Application
	​ 	
	​ 	 ​def​ start(_type, _args) ​do​
	»	 children = [
	»	 { Sequence.Stash, 123},
	»	 { Sequence.Server, nil},
	»]
	»	
	»	 opts = [​strategy:​ ​:rest_for_one​, ​name:​ Sequence.Supervisor]
	​ 	 Supervisor.start_link(children, opts)
	​ 	 ​end​
	​ 	
	​ 	​end​

Finally, we need to change our sequence server to use this stash. For
now, we’ll have it set its state to the current value in the stash
when it starts, and have it store the value back into the stash if it
crashes.

Setting the initial state simply means fetching the current value from
the stash in our sequence server’s init function. Handling the
sequence server exiting involves writing another callback,
terminate. Here’s the full code:
otp-supervisor/2/sequence/lib/sequence/server.ex
	​ 	​defmodule​ Sequence.Server ​do​
	​ 	 ​use​ GenServer
	​ 	
	​ 	 ​#####​
	​ 	 ​# External API​
	​ 	
	»	 ​def​ start_link(_) ​do​
	​ 	 GenServer.start_link(__MODULE__, nil, ​name:​ __MODULE__)
	​ 	 ​end​
	​ 	
	»	 ​def​ next_number ​do​
	​ 	 GenServer.call __MODULE__, ​:next_number​
	​ 	 ​end​
	​ 	
	»	 ​def​ increment_number(delta) ​do​
	​ 	 GenServer.cast __MODULE__, {​:increment_number​, delta}
	​ 	 ​end​
	​ 	
	​ 	 ​#####​
	​ 	 ​# GenServer implementation​
	​ 	
	​ 	 ​def​ init(_) ​do​
	»	 { ​:ok​, Sequence.Stash.get() }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_call(​:next_number​, _from, current_number) ​do​
	​ 	 { ​:reply​, current_number, current_number+1 }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_cast({​:increment_number​, delta}, current_number) ​do​
	​ 	 { ​:noreply​, current_number + delta}
	​ 	 ​end​
	​ 	
	»	 ​def​ terminate(_reason, current_number) ​do​
	»	 Sequence.Stash.update(current_number)
	»	 ​end​
	​ 	
	​ 	​end​

Let’s try this change in IEx:
	​ 	$ iex -S mix
	​ 	​iex>​ Sequence.Server.next_number
	​ 	123
	​ 	​iex>​ Sequence.Server.next_number
	​ 	124
	​ 	​iex>​ Sequence.Server.next_number
	​ 	125
	​ 	​iex>​ Sequence.Server.increment_number ​"​​cat"​
	​ 	:ok
	​ 	​iex>​
	​ 	12:15:48.424 [error] GenServer Sequence.Server terminating
	​ 	​**​ (ArithmeticError) bad argument in arithmetic expression
	​ 	 (sequence) lib/sequence/server.ex:39: Sequence.Server.handle_cast/2

	​ 	Last message: {:"$gen_cast", {:increment_number, "cat"}}
	​ 	State: 126
	​ 	​iex>​ Sequence.Server.next_number
	​ 	126
	​ 	​iex>​ Sequence.Server.next_number
	​ 	127
	​ 	​iex>​

How cool is that? The server code crashed, but was then restarted
automatically. And, in the process, the state was stored away in the
stash and then recovered—the sequence continued uninterrupted.

Your Turn
	Exercise: OTP-Supervisors-2

Rework your stack server to use a supervision tree with a separate
stash process to hold the state. Verify that it works and that when you
crash the server state is retained across a restart.

Simplifying the Stash

The sole job of our stash module is to store a value. When we look at
agents, we’ll see that they’re a perfect fit for this, and we’ll be
able to simplify our code.

Worker Restart Options

So far we’ve looked at supervision from the point of view of the
supervisor. In particular, we’ve seen how the supervision strategy
tells the supervisor how to deal with the death of a child process.

There’s a second level of configuration that applies to individual
workers. The most commonly used of these is the :restart option.

Previously we said that a supervisor strategy (such as :one_for_all)
is invoked when a worker dies. That’s not strictly true. Instead, the
strategy is invoked when a worker needs restarting. And the conditions
when a worker should be restarted are dictated by its restart:
option:
	:permanent
	
This worker should always be running—it is permanent. This means
that the supervision strategy will be applied whenever this worker
terminates, for whatever reason.

	:temporary
	
This worker should never be restarted, so the supervision strategy
is never applied if this worker dies.

	:transient
	
It is expected that this worker will at some point terminate
normally, and this termination should not result in a restart.
However, should this worker die abnormally, then it should be
restarted by running the supervision strategy.

The simplest way to specify the restart option for a worker is in the
worker module. You add it to the use GenServer (or use Supervisor)
line:
	​ 	​defmodule​ Convolver ​do​
	​ 	 ​use​ GenServer, ​restart:​ ​:transient​
	​ 	 ​# . . .​

A Little More Detail

You don’t have to know the information in this section first time
around, but as someone always asks….

We’ve seen that you start a supervisor by passing it a list of
children. Just what is that list?

At the very lowest level, it is a list of child specifications. A
child spec is an Elixir map. It describes which function to call to
start the worker, how to shut the worker down, the restart strategy,
the worker type, and any modules apart from the main module that form
part of the worker.

You can create a child spec map using the Supervisor.child_spec/2
function.

At the next level up, you can specify a worker by giving its module
name (or a tuple containing the module and the initial arguments). In
this case, the supervisor assumes you’ve implemented a child_spec
function in that module, and calls that function to get the
specification.

Going up one more level, when you add the line use GenServer
to a server module,
Elixir will define a default child_spec function in that module.
This function by default returns a map that tells the supervisor that
the start function will be start_link and that the restart strategy
will be :permanent. You can override these defaults with the options
you give use GenServer.

In practice, the option you’ll change the most will be :restart.
Although :permanent is a good default for long-running servers, it
won’t work for servers that do a job and then exit. These types of
servers should have a restart value of :transient.

Supervisors Are the Heart of Reliability

Think about our previous example; it was both trivial and
profound. It was trivial because there are many ways of achieving some
kind of fault tolerance with a library that returns successive
numbers. But it was profound because it is a concrete representation of the
idea of building rings of confidence in our code. The outer ring,
where our code interacts with the world, should be as reliable as we
can make it. But within that ring there are other, nested rings. And
in those rings, things can be less than perfect. The trick is to
ensure that the code in each ring knows how to deal with failures of
the code in the next ring down.

And that’s where supervisors come into play. In this chapter we’ve
seen only a small fraction of supervisors’ capabilities. They
have different strategies for dealing with the termination of a child,
different ways of terminating children, and different ways of
restarting them. There’s plenty of information online about using
OTP supervisors.

But the real power of supervisors is that they exist. The fact that
you use them to manage your workers means you are forced to think
about reliability and state as you design your application. And that
discipline leads to applications with very high availability—in
Programming Erlang (2nd edition) [Arm13], Joe Armstrong says OTP has
been used to build systems with 99.9999999% reliability. That’s nine
nines. And that ain’t bad.

(In case you were wondering, that equates to a
 complete application outage of roughly 1 second every 30
 years. I don’t know how you’d even measure that, which makes me a
 little suspicious….)

There’s one more level in our lightning tour of OTP—the
application. But before we look at that, let’s use what we learned so far and build some real-world code.

Footnotes

	[35]
	
http://media.pragprog.com/titles/elixir16/code/otp-server/2/sequence/lib/sequence/server.ex

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 19
A More Complex Example

When I first used Elixir, I struggled with how to organize my applications.
When should I use servers? How do supervisors fit in? Even basic
questions such as “how many applications should I write?” made me
nervous.

Frankly, I’m still thinking about these questions, three years later,
in the same way I’m still thinking about object-oriented system design
after 30 years of doing it. But, on the Elixir front, I have come up
with an approach that helps me think through these issues.

It isn’t rocket science. I just ask myself these five questions:
	What is the environment and what are its constraints?
	What are the obvious focal points?
	What are the runtime characteristics?
	What do I protect from errors?
	How do I get this thing running?

What I’m going to show in this chapter is just my ad hoc approach.
Please don’t take it as any kind of “methodology.” But if, like me, you
sometimes feel overwhelmed when designing a new Elixir system, these
steps might help.

Let’s write a simple application to show you what I mean.

Introduction to Duper

I have loads of duplicate files littering my computers.
In an effort to tame this, let’s write a duplicate-file finder. Well
call it Duper (so we can later create a paid version called SuperDuper). It’ll
work by scanning all the files in a directory tree, calculating a hash
for each. If two files have the same hash, we’ll report them as
duplicates.

Let’s start asking the questions.
Q1: What is the environment and what are its constraints?

We’re going to run this on a typical computer. It’ll have roughly two
orders of magnitude more file storage than main memory. Files will
range in size from 100 to 1010 bytes, and there will be roughly
107 of them.
What this means:

We need to allow for the fact that although we have to load files
into memory to determine their hashes, it is possible we won’t have
enough memory to load the largest files in whole. We definitely will
not be able to process all the files at once.

It also means that our design will need to cater to both big and
small files. Big files will take more time to read into memory than
small files, and they will also take longer to hash.
Q2: What are the focal points?

A focal point represents a responsibility of the application. By
considering the focal points now, we can start to reduce coupling in
the application as a whole: each focal point can be tightly coupled
internally but loosely coupled to the others. This coupling can be
both structural (for example, the representation of data) and temporal
(for example, the sequence in which things will happen).

In Duper, we can fairly easily identify some key focal points:
	
We need to have a place where we collect results. We are calculating a
hash value for each file, so this results store will need to hold all of
these. As we are looking for duplicate hashes, it would make sense for
this to be some kind of key/value store internally, where the key is the
hash and the value is a list of all files with that hash. However, this
is an implementation detail, and the implementation shouldn’t leak
through our API.

	
We need to have something that can traverse the filesystem,
returning each path just once.

	
We need to have something that can take a path and calculate the
hash of the corresponding file. Because an individual file may be
too big to fit in memory, we’ll have to read it in chunks,
calculating the hash incrementally.

	
Because we know we will need to be processing multiple files
concurrently in order to maximize our use of the CPU and IO
bandwidth, we’ll need something that orchestrates the overall
process.

This list may well change as we start to write code, but it’s good
enough to get us to the next step.
What this means:

At the very least, each focus we identify is an Elixir module. My
experience is that it’s wise to assume that most if not all are going
to end up being servers. I’m also coming to believe that many should
even be separate Elixir applications, but that’s not something I’m
going to dig into here.

Our code will be structured into four servers. Although we could do it
with fewer, using four means we can have specific characteristics for
each. The four are as follows:
	
The Results. This is the most important server, as it holds the
results of the scanning in memory. We need it to be reliable, so we
won’t put much code in it.

	
The PathFinder. This is responsible for returning the paths to
each file in the directory tree, one at a time.

	
The Worker. This asks the PathFinder for a path, calculates the
hash of the resulting file’s contents, and passes the result to the
gatherer.

	
The Gatherer. This is the server that both starts the ball rolling and
 determines when things have completed. When they do, it fetches
the results and reports on them.

Q3: What are the runtime characteristics?

Our application is going to spend the vast majority of its time in the
workers, as this is where we read the files and calculate the hash
values. Our goal is to keep both the processors and the IO bus as busy
as possible in order to maximize performance.

If we have just one worker, then it would read a file, hash it, read
the next, hash it, and so on. We’d alternate between being IO bound
and CPU bound. This doesn’t come close to maximizing our performance.

On the other hand, if we had one worker for each file, then they could
be reading and hashing at the same time. However, we’d run out of
memory on our machine, as we’d effectively be trying to load our
filesystem into memory.

The sweet spot lies in between.

One approach is to create n workers, and then divide the work
equally between them. This is the typical push model: plan the work up
front and let it execute. The problem with this approach is that it
assumes that each file is about the same size. If that’s not the case
(and on my machine it certainly isn’t), then it would be possible to
give one worker mostly small files and another mostly large files. The
first would finish early, and would then sit idle while the second
chewed through its workload.

The approach I prefer in this scenario is what I call hungry
consumer. It’s a pull model, where each worker asks for the next
thing to do, processes it, and then asks for more work. In this scheme
a worker that has a small file to process will get it done quickly,
then ask for more work. One with a bigger file will take more time.
There’ll never be an idle worker until we get to the very last files.

The following sequence diagram shows how
messages flow in this system. Notice that we have a mixture of
synchronous messaging (the pairs of arrows going in opposite directions) and asynchronous
messaging.

Q4: What do I protect from errors?

This is where we get to be pragmatic!

In an ideal world, nothing will fail, and everything should be
protected from errors.

The real world is different—we can only do so much protecting. How
much do we need? It depends. If we’re writing software for a
pacemaker, then I’d suggest the vast majority of the implementation
effort should go into error protection. If we’re writing a duplicate-file finder, then not so much.

We can assume that running our finder across 500 GB of files will take
minutes, not seconds. That means that if we have a failure reading
one file, we don’t want to stop the whole application and lose the
work done so far—it is good enough to continue ignoring that file.
What this means:

We want to protect the accumulating results, but
we’re not as worried about the individual workers—workers can simply
restart on failure and process the next file.
Q5. How do I get this thing running?

Sequential programs are easy to start: you just run them. Applications
that have many moving parts are more complex: you have to make sure
that the various servers are started so that if server A needs to call
server B, then B is running before A makes that call.

How should our four servers be started?

The sequence diagram tells us
most of the answer.
	Worker depends on PathFinder and Gatherer.
	Gatherer depends on Results.
	Pathfinder and Results depend on nothing.

What this means:

Pathfinder and Results should be started first, followed by Gatherer,
and then by the workers.

In terms of implementation, this is fairly straightforward. We simply
list the servers in this order as children of a supervisor, and the
supervisor will make sure each child is running before starting the
next.

But we also know that we will have multiple workers. Rather than try
to find a way of creating them up at the top level, we’ll add
something new: a subsupervisor. This subsupervisor is responsible for
just the pool of workers.

Adding this supervisor opens up an interesting possibility. If all the
children of a supervisor are the same, then that supervisor can be
used to create them dynamically. Our gatherer server could create a
pool of workers when it kicks off the application. This would let us
experiment with the effect the number of workers has on elapsed time.

Our new dependency structure looks like this:
	Worker depends on PathFinder and Gatherer.
	Gatherer depends on Results and the worker supervisor.
	Pathfinder and Results depend on nothing.

This gives us a supervision structure that
looks like this:

Of course, all this is just theory. Let’s start getting some feedback
by writing code.

The Duper Application

We’ll start by creating a supervised application:
	​ 	​$ ​​mix​​ ​​new​​ ​​--sup​​ ​​duper​
	​ 	​$ ​​cd​​ ​​duper​
	​ 	​$ ​​git​​ ​​init​
	​ 	​$ ​​git​​ ​​add​​ ​​.​
	​ 	​$ ​​git​​ ​​commit​​ ​​-a​​ ​​-m​​ ​​'raw application'​

Time to start writing servers.
The Results Server

The results server wraps an Elixir map. When it starts, it sets its
state to an empty map. The keys of this map are hash values, and the
values are the list of one of more paths whose files have that hash.

The server provides two API calls: one to add a
hash/path pair to the map, the second to retrieve entries that have
more than one path in the value (as these are two duplicate files).

This is similar to the code we wrote for the sequence stash:
duper/1/duper/lib/duper/results.ex
	​ 	​defmodule​ Duper.Results ​do​
	​ 	
	​ 	 ​use​ GenServer
	​ 	
	​ 	 @me __MODULE__
	​ 	
	​ 	
	​ 	 ​# API​
	​ 	
	​ 	 ​def​ start_link(_) ​do​
	​ 	 GenServer.start_link(__MODULE__, ​:no_args​, ​name:​ @me)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ add_hash_for(path, hash) ​do​
	​ 	 GenServer.cast(@me, { ​:add​, path, hash })
	​ 	 ​end​
	​ 	
	​ 	 ​def​ find_duplicates() ​do​
	​ 	 GenServer.call(@me, ​:find_duplicates​)
	​ 	 ​end​
	​ 	
	​ 	 ​# Server​
	​ 	
	​ 	 ​def​ init(​:no_args​) ​do​
	​ 	 { ​:ok​, %{} }
	​ 	 ​end​
	​ 	
	​ 	
	​ 	 ​def​ handle_cast({ ​:add​, path, hash }, results) ​do​
	​ 	 results =
	​ 	 Map.update(
	​ 	 results, ​# look in this map​
	​ 	 hash, ​# for an entry with key​
	​ 	 [path], ​# if not found, store this value​
	​ 	 ​fn​ existing -> ​# else update with result of this fn​
	​ 	 [path | existing]
	​ 	 ​end​)
	​ 	 { ​:noreply​, results }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_call(​:find_duplicates​, _from, results) ​do​
	​ 	 {
	​ 	 ​:reply​,
	​ 	 hashes_with_more_than_one_path(results),
	​ 	 results
	​ 	 }
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ hashes_with_more_than_one_path(results) ​do​
	​ 	 results
	​ 	 |> Enum.filter(​fn​ { _hash, paths } -> length(paths) > 1 ​end​)
	​ 	 |> Enum.map(&elem(&1, 1))
	​ 	 ​end​
	​ 	
	​ 	​end​

The only mild magic in this code is the use of Map.update/4. This
wonderful function takes a map, a key, an initial value, and a
function. If the key is not present in the map, then a new map is
returned with that key and initial value added. If the key is
present, then the corresponding value is passed to the function, and
whatever the function returns becomes the updated value in the
returned map. In our case, we’re using it to create a single-element
path list the first time a hash is encountered, and then to add paths
to that list on duplicates.

We’ll add this server to the list of top-level children in
application.ex.
	​ 	​def​ start(_type, _args) ​do​
	​ 	 children = [
	»	 Duper.Results,
	​]
	​ 	
	​ 	 opts = [​strategy:​ ​:one_for_one​, ​name:​ Duper.Supervisor]
	​ 	 Supervisor.start_link(children, opts)
	​ 	​end​

This code is easy to test:
duper/1/duper/test/duper/results_test.exs
	​ 	​defmodule​ Duper.ResultsTest ​do​
	​ 	 ​use​ ExUnit.Case
	​ 	 alias Duper.Results
	​ 	
	​ 	 test ​"​​can add entries to the results"​ ​do​
	​ 	
	​ 	 Results.add_hash_for(​"​​path1"​, 123)
	​ 	 Results.add_hash_for(​"​​path2"​, 456)
	​ 	 Results.add_hash_for(​"​​path3"​, 123)
	​ 	 Results.add_hash_for(​"​​path4"​, 789)
	​ 	 Results.add_hash_for(​"​​path5"​, 456)
	​ 	 Results.add_hash_for(​"​​path6"​, 999)
	​ 	
	​ 	 duplicates = Results.find_duplicates()
	​ 	
	​ 	 assert length(duplicates) == 2
	​ 	
	​ 	 assert ​~​w{path3 path1} ​in​ duplicates
	​ 	 assert ​~​w{path5 path2} ​in​ duplicates
	​ 	 ​end​
	​ 	
	​ 	​end​

	​ 	​$ ​​mix​​ ​​test​
	​ 	​...​
	​ 	
	​ 	Finished in 0.05 seconds
	​ 	1 doctest, 2 tests, 0 failures

	Structuring Tests

	

 	

I like the directory structure of my tests to follow the same
structure as the code it is testing. Because results.ex is in
lib/duper/results.ex, I put the test in a subdirectory of
test, also called duper.

The PathFinder Server

Our next server is responsible for returning all the file paths in a
filesystem tree, one at a time.

Elixir doesn’t have a filesystem-traversal API built in, so we look
on ‘hex.pm‘ and find
dir_walker,[36] which we just need to
wrap in a trivial GenServer whose state is the directory walker’s PID. So we
add the dependency to our mix.exs file:
duper/1/duper/mix.exs
	​ 	​defp​ deps ​do​
	​ 	 [
	​ 	 ​dir_walker:​ ​"​​~> 0.0.7"​,
	​]
	​ 	​end​

and code the server in lib/duper/path_finder.ex:
duper/1/duper/lib/duper/path_finder.ex
	​ 	​defmodule​ Duper.PathFinder ​do​
	​ 	 ​use​ GenServer
	​ 	
	​ 	 @me PathFinder
	​ 	
	​ 	 ​def​ start_link(root) ​do​
	​ 	 GenServer.start_link(__MODULE__, root, ​name:​ @me)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ next_path() ​do​
	​ 	 GenServer.call(@me, ​:next_path​)
	​ 	 ​end​
	​ 	
	​ 	
	​ 	 ​def​ init(path) ​do​
	​ 	 DirWalker.start_link(path)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_call(​:next_path​, _from, dir_walker) ​do​
	​ 	 path = ​case​ DirWalker.next(dir_walker) ​do​
	​ 	 [path] -> path
	​ 	 other -> other
	​ 	 ​end​
	​ 	
	​ 	 { ​:reply​, path, dir_walker }
	​ 	 ​end​
	​ 	
	​ 	​end​

Finally we add the pathfinder server to our application’s list of
children:
	​ 	​def​ start(_type, _args) ​do​
	​ 	 children = [
	​ 	 Duper.Results,
	​ 	 { Duper.PathFinder, ​"​​."​ },
	​]
	​ 	
	​ 	 opts = [​strategy:​ ​:one_for_one​, ​name:​ Duper.Supervisor]
	​ 	 Supervisor.start_link(children, opts)
	​ 	​end​

Notice we used a tuple to specify the PathFinder server. That’s
because it requires us to pass in the root of the tree to be searched
as a parameter. Here, I’m using the current working directory, “.”,
which will work well for playing with the code.
The Worker Supervisor

When we investigated how we’d get things
started,, we realized that we’d need a different supervisor for
our workers. This supervisor will only manage the worker servers, and
it will let us add servers dynamically, after the application has
started.

The simplest way to do this is to use a DynamicSupervisor. This type
of supervisor allows you to create an arbitrary number of workers at
runtime. (A DynamicSupervisor encapsulates what used to be the :simple_one_for_one strategy in regular supervisors. You can still do it the old way, but DynamicSupervisors let you express your intent better.)

Let’s create the supervisor (in lib/duper/worker_supervisor.ex) and then
see how it works.
duper/1/duper/lib/duper/worker_supervisor.ex
	​ 	​defmodule​ Duper.WorkerSupervisor ​do​
	​ 	 ​use​ DynamicSupervisor
	​ 	
	​ 	 @me WorkerSupervisor
	​ 	
	​ 	 ​def​ start_link(_) ​do​
	​ 	 DynamicSupervisor.start_link(__MODULE__, ​:no_args​, ​name:​ @me)
	​ 	 ​end​
	​ 	
	​ 	
	​ 	 ​def​ init(​:no_args​) ​do​
	​ 	 DynamicSupervisor.init(​strategy:​ ​:one_for_one​)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ add_worker() ​do​
	​ 	 {​:ok​, _pid} = DynamicSupervisor.start_child(@me, Duper.Worker)
	​ 	 ​end​
	​ 	​end​

The supervisor is just a regular Elixir module. It starts with use
DynamicSupervisor, which gives it its super(visor) powers.

The start_link function works the same in a supervisor as it does in
a GenServer: it is called to start the server containing the
supervisor code. Inside this server, Elixir automatically calls the
init callback, which in turn initializes the supervisor code itself.
This initialization receives the supervisor options. In the case of a
dynamic supervisor, this can only be strategy: one_for_one.

Later, we can call the add_worker function. This calls the
supervisor, telling it to add another child based on the child
specification we pass. In this case, we tell it to start
Duper.Worker. A new server is
created for each call, and these servers run in parallel. As
a result, each time add_worker is called, a new Duper.Worker
instance is spawned.

Note: One side effect of the fact that the same module is run in multiple child servers is we can’t give the children a name in their start_link function. If we did, then there’d be multiple servers with the same name, which Elixir doesn’t allow.

Let’s remember to add the supervisor to the list of top-level
children.
	​ 	​def​ start(_type, _args) ​do​
	​ 	 children = [
	​ 	 Duper.Results,
	​ 	 { Duper.PathFinder, ​"​​."​ },
	​ 	 Duper.WorkerSupervisor,
	​]
	​ 	
	​ 	 opts = [​strategy:​ ​:one_for_one​, ​name:​ Duper.Supervisor]
	​ 	 Supervisor.start_link(children, opts)
	​ 	​end​

Thinking About Supervision Strategies

Whenever I add a child to a supervisor’s list, I stop and think about
the supervision strategy: how do I want the failure of a child managed
by this supervisor to affect the other children?

If the results server fails, then all is lost, and we have to restart
everything. The same applies to the pathfinder: although we could in
theory work out how far into the folder structure we were if it
crashed, and restart from there, in practice that would be difficult,
so for now we treat a failure of the pathfinder as a failure of the
application.

What about the worker supervisor? Here we have to be careful. The
worker supervisor handles the actual worker processes. If one of these
fails, the worker supervisor simply restarts it and the application
continues. But the failure of a worker does not mean that the worker
supervisor itself has failed. In fact, in the very unlikely event that
the worker supervisor fails, it’s probably best to assume we can’t
continue and stop the application.

So, for all three children we have on this top-level supervisor, a
failure means the application should stop. The strategy that enforces
this is :one_for_all, so we change our code accordingly.
	​ 	 ​def​ start(_type, _args) ​do​
	​ 	 children = [
	​ 	 Duper.Results,
	​ 	 { Duper.PathFinder, ​"​​."​ },
	​ 	 Duper.WorkerSupervisor,
	​]
	​ 	
	»	 opts = [​strategy:​ ​:one_for_all​, ​name:​ Duper.Supervisor]
	​ 	 Supervisor.start_link(children, opts)
	​ 	 ​end​

That’s all we’re going to do on the worker side of things for now.
Let’s write the gatherer, and then circle back and implement the
actual worker.
The Gatherer Server

Looking at the sequence diagram, we
can see that the gatherer is invoked by the workers. Each worker can
tell the gatherer that it has run out of work (by calling done()) or
it can give it the results of hashing a file.

The gatherer has one more function, not shown in the diagram. It is
responsible for starting the workers, and it is responsible for
determining when the application has finished processing the files.

To do this, it maintains a simple state: the number of worker servers
that are currently running.

Knowing that, we can write most of the gatherer server:
duper/1/duper/lib/duper/gatherer.ex
	​ 	​defmodule​ Duper.Gatherer ​do​
	​ 	 ​use​ GenServer
	​ 	
	​ 	 @me Gatherer
	​ 	
	​ 	 ​# api​
	​ 	
	​ 	 ​def​ start_link(worker_count) ​do​
	​ 	 GenServer.start_link(__MODULE__, worker_count, ​name:​ @me)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ done() ​do​
	​ 	 GenServer.cast(@me, ​:done​)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ result(path, hash) ​do​
	​ 	 GenServer.cast(@me, { ​:result​, path, hash })
	​ 	 ​end​
	​ 	
	​ 	 ​# server​
	​ 	
	​ 	 ​def​ init(worker_count) ​do​
	​ 	 { ​:ok​, worker_count }
	​ 	 ​end​
	​ 	 ​def​ handle_cast(​:done​, _worker_count = 1) ​do​
	​ 	 report_results()
	​ 	 System.halt(0)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_cast(​:done​, worker_count) ​do​
	​ 	 { ​:noreply​, worker_count - 1 }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_cast({​:result​, path, hash}, worker_count) ​do​
	​ 	 Duper.Results.add_hash_for(path, hash)
	​ 	 { ​:noreply​, worker_count }
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ report_results() ​do​
	​ 	 IO.puts ​"​​Results:\n"​
	​ 	 Duper.Results.find_duplicates()
	​ 	 |> Enum.each(&IO.inspect/1)
	​ 	 ​end​
	​ 	​end​

See how the implementation of :done keeps track of the number of
running workers? As each signals it is done the count is
decremented, until the last :done is received, where we report the
results and exit.

We could try something like this:
	​ 	​def​ init(worker_count) ​do​
	​ 	 1..worker_count
	​ 	 |> Enum.each(​fn​ _ -> Duper.WorkerSupervisor.add_worker() ​end​)
	​ 	 { ​:ok​, worker_count }
	​ 	​end​

However, this won’t work, and it won’t work in a fairly ugly way.

Remember when we described how supervisors started children in order?
They wait for each child to initialize itself before starting the next.

In the preceding code, we’re still initializing the gatherer when we
start adding workers. The workers may start running before the
initialization of the gatherer finishes. In this case, messages they
send to it may well get lost. If you’re only traversing a small
filesystem tree, it is even possible that a worker might signal
:done before the gatherer is ready, in which case the system will
hang, because it will never know that it has finished.

The answer to this mess is to follow a simple rule: when you’re
initializing a server, don’t interact with anything that uses that
server.

So how do we get the workers running? The answer will be familiar to
anyone who has written JavaScript—we arrange for a callback into our
gatherer server after initialization is complete:
	​ 	​def​ init(worker_count) ​do​
	»	 Process.send_after(self(), ​:kickoff​, 0)
	​ 	 { ​:ok​, worker_count }
	​ 	​end​
	​ 	
	»	​def​ handle_info(​:kickoff​, worker_count) ​do​
	»	 1..worker_count
	»	 |> Enum.each(​fn​ _ -> Duper.WorkerSupervisor.add_worker() ​end​)
	»	 { ​:noreply​, worker_count }
	»	​end​

Here the init function uses send_after to tell the runtime to
queue a message to this server immediately (that is, after waiting
0 ms). When the init function exits, the server is then free to pick
up this message, which triggers the handle_info callback, and the
workers get started.

So, now that the gatherer code is ready, we just have to remember to start it:
duper/1/duper/lib/duper/application.ex
	​ 	​def​ start(_type, _args) ​do​
	​ 	 children = [
	​ 	 Duper.Results,
	​ 	 { Duper.PathFinder, ​"​​/Users/dave/Pictures"​ },
	​ 	 Duper.WorkerSupervisor,
	​ 	 { Duper.Gatherer, 1 },
	​]
	​ 	
	​ 	 opts = [​strategy:​ ​:one_for_all​, ​name:​ Duper.Supervisor]
	​ 	 Supervisor.start_link(children, opts)
	​ 	​end​

What About the Workers?

Referring back one last time to the
sequence diagram, we can see that the workers are a little
strange: they have no incoming API. All they do is ask for a path,
compute the hash of the corresponding file, and send the hash to the
gatherer. At some point, there are no paths left, so they then send a
:done notification to the gatherer instead.

Here’s the code:
duper/1/duper/lib/duper/worker.ex
	​ 	​defmodule​ Duper.Worker ​do​
	​ 	 ​use​ GenServer, ​restart:​ ​:transient​
	​ 	
	​ 	 ​def​ start_link(_) ​do​
	​ 	 GenServer.start_link(__MODULE__, ​:no_args​)
	​ 	 ​end​
	​ 	
	​ 	
	​ 	 ​def​ init(​:no_args​) ​do​
	​ 	 Process.send_after(self(), ​:do_one_file​, 0)
	​ 	 { ​:ok​, nil }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_info(​:do_one_file​, _) ​do​
	​ 	 Duper.PathFinder.next_path()
	​ 	 |> add_result()
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ add_result(nil) ​do​
	​ 	 Duper.Gatherer.done()
	​ 	 {​:stop​, ​:normal​, nil}
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ add_result(path) ​do​
	​ 	 Duper.Gatherer.result(path, hash_of_file_at(path))
	​ 	 send(self(), ​:do_one_file​)
	​ 	 { ​:noreply​, nil }
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ hash_of_file_at(path) ​do​
	​ 	 File.stream!(path, [], 1024*1024)
	​ 	 |> Enum.reduce(
	​ 	 ​:crypto​.hash_init(​:md5​),
	​ 	 ​fn​ (block, hash) ->
	​ 	 ​:crypto​.hash_update(hash, block)
	​ 	 ​end​)
	​ 	 |> ​:crypto​.hash_final()
	​ 	 ​end​
	​ 	​end​

Notice we use the same trick in the init() function to call back
into ourselves, invoking handle_info(:do_one_file,_). This function
asks the pathfinder for the next file, and then passes the returned
value to add_result().

If the pathfinder returns nil, it has run out of files, so we tell
the gatherer that we’re done. Otherwise, we call a private function
to calculate the hash of the file contents, pass the path and the hash
to the gatherer, and then send ourselves another :do_one_file
message, causing the whole process to repeat.
	Why Can’t We Just Write a Looping Function?

	

 	

We can implement a loop in Elixir using a recursive function call. But
the worker server doesn’t do this. Instead, it sends itself a message
and then exits after processing each file.

The reason is that the Elixir runtime won’t let any one invocation of
a server hog the CPU forever. Instead it sets a timeout on each call
or cast into a GenServer (by default 5 seconds). If the call or cast
handler has not returned in that time, the runtime assumes something
has gone wrong and terminates the server.

Processing a million files in a loop will take more than 5 seconds.
So we instead just process one file per entry into the server, and
then queue up another message to process the next on a fresh entry.
The result: no timeouts.

One other thing to note—we flagged this server as being transient:

	​ 	​use​ GenServer, ​restart:​ ​:transient​

This means that the supervisor will not restart it if it terminates
normally, but will restart it if it fails.

But Does It Work?

Let’s see where we are. We’re implemented four GenServers and two
supervisors. When the application starts, it will start the top-level
supervisor, which in turn starts Results, PathFinder,
WorkerSupervisor, and Gatherer.

When Gatherer starts (and it will start last), it tells the worker
supervisor to start a number of workers. When each worker starts, it
gets a path to process from PathFinder, hashes the corresponding file,
and passes the result to Gatherer, which stores the path and the hash
in the Results server. When there are no more files to process, each
worker sends a :done message to the gatherer. When the last worker
is done, the gatherer reports the results.

Everything seems to be wired up. Let’s try it:
	​ 	​$ ​​mix​​ ​​run​
	​ 	Compiling 7 files (.ex)
	​ 	​Generated duper app​
	​ 	​$​

Hmm…that’s strange. No output.

The first time this happened to me, I wasted most of a day working it
out. And the problem is obvious once you know what’s happening.

The mix run command runs your application. Once it has it running,
mix exits: mission accomplished.

But your application never finished; it just got started and mix went
away. We have to tell mix not to exit.
	​ 	​$ ​​mix​​ ​​run​​ ​​--no-halt​
	​ 	Results:
	​ 	
	​ 	["./_build/dev/lib/dir_walker/.compile.elixir_scm",
	​ 	 "./_build/test/lib/dir_walker/.compile.elixir_scm"]
	​ 	["./_build/dev/lib/dir_walker/.compile.elixir",
	​ 	 "./_build/test/lib/dir_walker/.compile.elixir"]
	​ 	["./_build/dev/lib/dir_walker/.compile.xref",
	​ 	 "./_build/dev/lib/duper/.compile.xref",
	​ 	 "./_build/test/lib/dir_walker/.compile.xref"]
	​ 	["./deps/dir_walker/.fetch",
	​ 	 "./_build/dev/lib/dir_walker/.compile.lock",
	​ 	 "./_build/dev/lib/dir_walker/.compile.fetch",
	​ 	 "./_build/test/lib/dir_walker/.compile.lock",
	​ 	 "./_build/test/lib/dir_walker/.compile.fetch"]
	​ 	["./_build/dev/lib/dir_walker/ebin/dir_walker.app",
	​ 	 "./_build/test/lib/dir_walker/ebin/dir_walker.app"]
	​ 	​$​

Much better. Even inside our Elixir project we have duplicated files,
mostly between the test and dev environments.
Let’s Play with Timing

Our lib/duper/application.ex file contains parameters that tell the
app where to search and how many workers to use when searching. (We’ll
see in the next chapter how to move those values out of code and onto
the command line.)

Let’s change these parameters. My ~/Pictures folder used 30 GB to
store about 6,000 old pictures from when I used iPhoto.
Let’s look for duplicates in that folder with one worker, two workers,
and so on, recording elapsed time.

Here are the parameters for using a single worker:
	​ 	children = [
	​ 	 Duper.Results,
	​ 	 { Duper.PathFinder, ​"​​/Users/dave/Pictures"​ },
	​ 	 Duper.WorkerSupervisor,
	​ 	 { Duper.Gatherer, 1 },
	​]

Run it:
	​ 	​$ ​​time​​ ​​mix​​ ​​run​​ ​​--no-halt​​ ​​>dups​
	​ 	 87.57 real 58.81 user 23.44 sys
	​ 	
	​ 	​$ ​​wc​​ ​​-l​​ ​​dups​
	​ 	 1869 dups

We found 1,900-odd duplicated photos in about 88 seconds. The Elixir runtime
used about 98% of one of my cores during this process.

Let’s try with two workers. Alter application.ex, and run this:
	​ 	​$ ​​time​​ ​​mix​​ ​​run​​ ​​--no-halt​​ ​​>dups​
	​ 	 48.58 real 58.33 user 17.98 sys

Nice! It ran almost twice as fast. It means that I’m successfully
overlapping the IO and the hashing.

To cut a long story short, here are the results for 1..5, 10, and 50
workers.

As my machine has only two
processors (four cores, but two are just hyperthreading), that’s about
as good as I could expect.

Planning Your Elixir Application

This book is about thinking differently. We started by thinking about
the code we write, and how a function style with immutable data forces
us to think in terms of transformations.

In the last few chapters we’ve come across another dimension of this:
thinking about how we structure our application. Our code is no longer
monolithic. Instead we think about independent, interacting servers.
(You might even call them services.)

This shift in thinking is a difficult one, because it involves both
conceptual adjustments and practical deployment issues. It is
something you’ll become more comfortable with over time. But remember
to ask yourself the five questions, and your path should be easier:

	What is the environment and what are its constraints?
	What are the obvious focal points?
	What are the runtime characteristics?
	What do I protect from errors?
	How do I get this thing running?

Next Up

We have an application, but it doesn’t really work well for us: things
are hardcoded. Let’s investigate a little more about what it means to
be an application in the next chapter.

Footnotes

	[36]
	
https://hex.pm/packages/dir_walker

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 20
OTP: Applications

So far in our quick tour of Elixir and OTP we’ve looked at server
processes and the supervisors that monitor them. There’s one more
stage in our journey—the application.

This Is Not Your Father’s Application

Because OTP comes from the Erlang world, it uses Erlang names for
things. And unfortunately, some of these names are not terribly
descriptive. The name application is one of these. When most of us
talk about applications, we think of a program we run to do
something—maybe on our computer or phone, or via a web browser. An
application is a self-contained whole.

But in the OTP world, that’s not the case. Instead, an application is
a bundle of code that comes with a descriptor. That descriptor tells
the runtime what dependencies the code has, what global names it
registers, and so on. In fact, an OTP application is more like a dynamic link library
or a shared object than a conventional application.

It might help to see the word application in your head but pronounce
it component or service.

For example, back when we were fetching GitHub issues using the
HTTPoison library, what we actually installed was an independent
application containing HTTPoison. Although it looked like we were just
using a library, mix automatically loaded the HTTPoison application.
When we then started it, HTTPoison in turn started a couple of other
applications that it needed (SSL and Hackney), which in turn kicked
off their own supervisors and workers. And all of this was transparent
to us.

I’ve said that applications are components, but some
applications are at the top of the tree and are meant to be
run directly.

In this chapter we’ll look at both types of application component (see
what I did there?). In reality they’re virtually the same, so
let’s cover the common ground first.

The Application Specification File

You probably noticed that every now and then mix will talk about
a file called name.app, where name is your application’s name.

This file is called an application specification and is used to
define your application to the runtime environment. Mix creates this
file automatically from the information in mix.exs combined with
information it gleans from compiling your application.

When you run your application this file is consulted to get things loaded.

Your application does not need to use all the OTP functionality—this
file will always be created and referred to. However,
once you start using OTP supervision trees, stuff you add to
mix.exs will get copied into the .app file.

Turning Our Sequence Program into an OTP Application

So, here’s the good news. The application here is already a full-blown OTP application. When mix created the
initial project tree, it added a supervisor (which we then modified)
and enough information to our mix.exs file to get the application
started. In particular, it filled in the application function:
	​ 	def application do
	​ 	 [
	​ 	 mod: {
	​ 	 Sequence.Application, []
	​ 	 },
	​ 	 extra_applications: [:logger],
	​]
	​ 	end

This says that the top-level module of our application is called
Sequence. OTP assumes this module will implement a start function,
and it will pass that function an empty list as a parameter.

In our previous version of the start function, we ignored the
arguments and instead hard-wired the call to start_link to pass
123 to our application. Let’s change that to take the value from
mix.exs instead. First, change mix.exs to pass an initial value
(we’ll use 456):
	​ 	​def​ application ​do​
	​ 	 [
	​ 	 ​mod:​ {
	​ 	 Sequence.Application, 456
	​ 	 },
	​ 	 ​extra_applications:​ [​:logger​],
	​]
	​ 	​end​

Then change the application.ex code to use this passed-in value:
otp-app/sequence/lib/sequence/application.ex
	​ 	​defmodule​ Sequence.Application ​do​
	​ 	 @moduledoc false
	​ 	
	​ 	 ​use​ Application
	​ 	
	»	 ​def​ start(_type, initial_number) ​do​
	​ 	 children = [
	»	 { Sequence.Stash, initial_number},
	​ 	 { Sequence.Server, nil},
	​]
	​ 	
	​ 	 opts = [​strategy:​ ​:rest_for_one​, ​name:​ Sequence.Supervisor]
	​ 	 Supervisor.start_link(children, opts)
	​ 	 ​end​
	​ 	
	​ 	​end​

We can check that this works:
	​ 	​$ ​​iex​​ ​​-S​​ ​​mix​
	​ 	Compiling 5 files (.ex)
	​ 	Generated sequence app

	​ 	​iex>​ Sequence.Server.next_number
	​ 	456

Let’s look at the application function again.

The mod: option tells OTP the module that is the main entry point
for our app. If our app is a conventional runnable application, then
it will need to start somewhere, so we’d write our kickoff function
here. But even pure library applications may need to be
initialized. (For example, a logging library may start a background
logger process or connect to a central logging server.)

For the sequence app, we tell OTP that the Sequence module is the main
entry point. OTP will call this module’s start function when it
starts the application. The second element of the tuple is the
parameter to pass to this function. In our case, it’s the initial
number for the sequence.

There’s a second option we’ll want to add to this.

The registered: option
lists the names that our application will register. We can use this
to ensure each name is unique across all loaded applications in a node
or cluster. In our case, the sequence server registers itself under
the name Sequence.Server, so we’ll update the configuration to read as follows:
otp-app/sequence/mix.exs
	​ 	​def​ application ​do​
	​ 	 [
	​ 	 ​mod:​ {
	​ 	 Sequence.Application, 456
	​ 	 },
	​ 	 ​registered:​ [
	​ 	 Sequence.Server,
	​],
	​ 	 ​extra_applications:​ [​:logger​],
	​]
	​ 	​end​

Now that we’ve done the configuring in mix, we run mix compile,
which both compiles the app and updates the sequence.app application
specification file with information from mix.exs. (The same thing happens
if we run mix using iex -S mix.)
	​ 	​$ ​​mix​​ ​​compile​
	​ 	Compiling 5 files (.ex)
	»	Generated sequence app

Mix tells us it has created a sequence.app file, but where is it?
You’ll find it tucked away in _build/dev/lib/sequence/ebin. Although
a little obscure, the directory structure under _build is compatible
with Erlang’s OTP way of doing things. This makes life easier when
you release your code. You’ll notice that the path has dev
in it—this keeps things you’re doing in development separate from
other build products.

Let’s look at the sequence.app that was generated.
otp-app/sequence/_build/dev/lib/sequence/ebin/sequence.app
	​ 	{application,sequence,
	​ 	 [{applications,[kernel,stdlib,elixir,logger]},
	​ 	 {description,​"sequence"​},
	​ 	 {modules,['Elixir.Sequence','Elixir.Sequence.Application',
	​ 	 'Elixir.Sequence.Server','Elixir.Sequence.Stash']},
	​ 	 {vsn,​"0.1.0"​},
	​ 	 {mod,{'Elixir.Sequence.Application',456}},
	​ 	 {registered,['Elixir.Sequence.Server']},
	​ 	 {extra_applications,[logger]}]}.

This file contains an Erlang tuple that defines the app. Some of the
information comes from the project and application section of
mix.exs. Mix also automatically added a list of the names of all the
compiled modules in our app (the .beam files) and a list of the apps
our app depends on (kernel, stdlib, and elixir). That’s pretty smart.
More on Application Parameters

In the previous example, we passed the integer 456 to the application
as an initial parameter. Although that’s valid(ish), we really should have
passed in a keyword list instead. That’s because Elixir provides a
function, Application.get_env, to retrieve these values from anywhere
in our code. So we probably should have set up mix.exs with
	​ 	​def​ application ​do​
	​ 	 [
	​ 	 ​mod:​ { Sequence, [] },
	​ 	 ​env:​ [​initial_number:​ 456],
	​ 	 ​registered:​ [Sequence.Server]
	​]
	​ 	​end​

and then accessed the value using get_env. We call
this with the application name and the name of the environment
parameter to fetch:
	​ 	​defmodule​ Sequence ​do​
	​ 	 ​use​ Application
	​ 	
	​ 	 ​def​ start(_type, _args) ​do​
	​ 	 Sequence.Supervisor.start_link(Application.get_env(​:sequence​, ​:initial_number​))
	​ 	 ​end​
	​ 	
	​ 	​end​

Your call.

Supervision Is the Basis of Reliability

Let’s briefly recap. In that last example, we ran our OTP sequence
application using mix. Looking at just our code, we see that a supervisor
process and two worker processes got started. These were knitted
together so our system continued to run with no loss of state
even if the worker that we talked to crashed. And any other Erlang
process on this node (including IEx itself) can talk to our sequence
application and enjoy its stream of freshly minted integers.

You probably noticed that the start function takes two
parameters. The second corresponds to the value we specified in the
mod: option in the mix.exs file (in our case,
the counter’s initial value). The first parameter specifies
the status of the restart,
which we’re not going to get into, because…

Your Turn
	Exercise: OTP-Applications-1

Turn your stack server into an OTP application.

	Exercise: OTP-Applications-2

So far, we haven’t written any tests for the application. Is there
anything you can test? See what you can do.

Releasing Your Code

One way Erlang achieves nine-nines application availability is by
having a rock-solid release-management system. Elixir makes this
system easy to use.

Before we get too far, let’s talk terminology.

A release is a bundle that contains a particular version of your
application, its dependencies, its configuration, and any metadata it
requires to get running and stay running. A deployment is a way of
getting a release into an environment where it can be used.

A hot upgrade is a kind of deployment that allows the release of a
currently running application to be changed while that application
continues to run—the upgrade happens in place with no user-detectable
disruption.

In this section we’ll talk about releases and hot upgrades. We won’t
dig too deeply into deployment.

Distillery—The Elixir Release Manager

Distillery is an Elixir package that makes most release tasks easy.
In particular, it can take the complexity that is the source of your
project, along with its dependencies, and reduce it down to a single
deployable file.

Imagine you were managing the deployment of hundreds of thousands of
lines of code into running telephone switches, while maintaining all
the ongoing connections, providing a full audit trail, and maintaining
contractual uptime guarantees. This is clearly complex. Very complex.
And this is the task the Erlang folks faced, so they created tools that
help.

Distillery is a layer of abstraction on top of this complexity.
Normally it manages to hide it, but sometimes the lower levels leak
out and you get to see how the sausage is made.

This book isn’t going to get that deep. Instead, I just want to give
you a feel for the process.
Before We Start

In Elixir, we version both the application code and the data it
operates on. The two are independent—we might go for a dozen code
releases without changing any data structures.

The code version is stored in the project dictionary in mix.exs.
But how do we version the data? Come to think of it, where do we even
define the data?

In an OTP application, all state is maintained by servers, and each
server’s state is independent. So it makes sense to version the app
data within each server module. Perhaps a server initially holds its
state in a two-element tuple. That could be version 0. Later, it is
changed to hold state in a three-element tuple. That could be version
1.

We’ll see the significance of this later. For now, let’s just set the
version of the state data in our server. We use the @vsn (version)
directive:
otp-app/sequence_v0/lib/sequence/server.ex
	​ 	​defmodule​ Sequence.Server ​do​
	​ 	 ​use​ GenServer
	​ 	
	​ 	 @vsn ​"​​0"​

Now let’s generate a release.
Your First Release

First, we have to add distillery as a project dependency. Open the
sequence project’s mix.exs file and update the deps function.
otp-app/sequence_v0/mix.exs
	​ 	​defp​ deps ​do​
	​ 	 [
	​ 	 {​:distillery​, ​"​​~> 1.5"​, ​runtime:​ false},
	​]
	​ 	​end​

(The runtime: false option tells mix that Distillery is not to be
started with the running application.)

Remember to install the dependency:
	​ 	​$ ​​mix​​ ​​do​​ ​​deps.get,​​ ​​deps.compile​

Distillery makes sensible
choices for the various configuration options, so for a basic app like
this we’re now ready to create our first release. To start off we create the
release configuration:
	​ 	​$ ​​mix​​ ​​release.init​
	​ 	
	​ 	An example config file has been placed in rel/config.exs, review it,
	​ 	make edits as needed/desired, and then run `mix release` to build
	​ 	the release

If you’re following along at home, have a look at rel.config.exs
(it’s too large to show here). The defaults look good, so let’s build
the actual release. We’ll tell it we want a production version of the
release. If we don’t, the release it generates will be for
development, and won’t be a self-contained package.
	​ 	​$ ​​mix​​ ​​release​​ ​​--env=prod​
	​ 	==> Assembling release..
	​ 	==> Building release sequence:0.1.0 using environment prod
	​ 	==> Including ERTS 9.1 from /usr/local/Cellar/erlang/20.1/lib/erlang/erts-9.1
	​ 	==> Packaging release..
	​ 	==> Release successfully built!
	​ 	 You can run it in one of the following ways:
	​ 	 Interactive: _build/dev/rel/sequence/bin/sequence console
	​ 	 Foreground: _build/dev/rel/sequence/bin/sequence foreground
	​ 	 Daemon: _build/dev/rel/sequence/bin/sequence start

Distillery got the application name and version number from your mix.exs
file, and packaged your app into the _build/dev/rel/ directory:

	​ 	_build/dev/rel
	​ 	└── sequence
	​ 	 ├── bin « global scripts
	​ 	 │ ├── nodetool
	​ 	 │ ├── release_utils.escript
	​ 	 │ ├── sequence
	​ 	 │ ├── sequence.bat
	​ 	 │ ├── sequence_loader.sh
	​ 	 │ └── start_clean.boot
	​ 	 ├── erts-9.1 « the runtime (Erlang + Elixir)
	​ 	 │ ├── . . .
	​ 	 │ ├── elixir-1.5.2
	​ 	 │ ├── sequence-0.1.0 « our compiled application
	​ 	 │ │ ├── consolidated
	​ 	 │ │ │ ├── Elixir.Collectable.beam
	​ 	 │ │ │ ├── Elixir.Enumerable.beam
	​ 	 │ │ │ ├── Elixir.IEx.Info.beam
	​ 	 │ │ │ ├── Elixir.Inspect.beam
	​ 	 │ │ │ ├── Elixir.List.Chars.beam
	​ 	 │ │ │ └── Elixir.String.Chars.beam

	​ 	│ │ └── ebin
	​ 	│ │ ├── Elixir.Sequence.Application.beam
	​ 	│ │ ├── Elixir.Sequence.Server.beam
	​ 	│ │ ├── Elixir.Sequence.Stash.beam
	​ 	│ │ ├── Elixir.Sequence.beam
	​ 	│ │ └── sequence.app
	​ 	│ └── stdlib-3.4.2
	​ 	└── releases « release specific stuff
	​ 	 ├── 0.1.0 « our initial release
	​ 	 │ ├── commands
	​ 	 │ ├── hooks
	​ 	 │ ├── . . .
	​ 	 │ ├── libexec
	​ 	 │ ├── . . .
	​ 	 │ ├── sequence.bat
	​ 	 │ ├── sequence.boot
	​ 	 │ ├── sequence.rel
	​ 	 │ ├── sequence.script
	​ 	 │ ├── sequence.sh
	​ 	 │ ├── sequence.tar.gz « the packaged release
	​ 	 │ ├── start_clean.boot
	​ 	 │ ├── sys.config
	​ 	 │ └── vm.args
	​ 	 ├── RELEASES
	​ 	 └── start_erl.data

The most important file is
rel/sequence/releases/0.0.1/sequence.tar.gz. It contains everything
needed to run this release. This is the file we deploy to our servers.
A Toy Deployment Environment

I don’t want to slow things down by having you provision a server
in the cloud, so I’m going to deploy to my local machine. However,
to make it a little more realistic, I’ll pretend this machine is
remote, and use ssh to do all the deploying.
I’ll also be creating directories and copying files manually.
In practice, you’d want to automate all of this with something like
Capistrano or Ansible.

We’ll store the releases in a deploy directory. I’ll put this inside
my home directory—feel free to put it anywhere (writable) you want.

	​ 	​$ ​​ssh​​ ​​localhost​​ ​​mkdir​​ ​​~/deploy​

Deploy and Run the App

Now we need to set up the initial release and its directory
structure. Copy the sequence.tar.gz file into the deploy
directory, and then extract its contents.
	​ 	​$ ​​scp​​ ​​_build/dev/rel/sequence/releases/0.1.0/sequence.tar.gz​​ ​​localhost:deploy​
	​ 	​$ ​​ssh​​ ​​localhost​​ ​​tar​​ ​​-x​​ ​​-f​​ ​​~/deploy/sequence.tar.gz​​ ​​-C​​ ​​~/deploy​

The app is now ready to run. The scripts in deploy/bin
control it. These, in turn, delegate to scripts in the current
release directory (all on the server).

Let’s start an IEx console. (The ssh -t option lets us
control the remote IEx with ^C and ^G.)
	​ 	$ ssh -t localhost ~/deploy/bin/sequence console
	​ 	Using /Users/dave/deploy/releases/0.0.1/sequence.sh
	​ 	Interactive Elixir (1.x) - press Ctrl+C to exit (type h() ENTER for help)
	​ 	
	​ 	iex(sequence@127.0.0.1)2> Sequence.Server.next_number
	​ 	456
	​ 	iex(sequence@127.0.0.1)3> Sequence.Server.next_number
	​ 	457

(Leave this session running—we’ll use it to demonstrate hot code
reloading.)
A Second Release

Our marketing team ran a focus group. It seems our customers want the
next_number function to return a message like “the next number is
458.”

First we’ll change server.ex:
otp-app/sequence_v1/lib/sequence/server.ex
	​ 	​def​ next_number ​do​
	​ 	 ​with​ number = GenServer.call(__MODULE__, ​:next_number​),
	​ 	 ​do​: ​"​​The next number is ​​#{​number​}​​"​
	​ 	​end​

Then we’ll bump the application’s version number in mix.exs.
otp-app/sequence_v1/mix.exs
	​ 	​def​ project ​do​
	​ 	 [
	​ 	 ​app:​ ​:sequence​,
	»	 ​version:​ ​"​​0.2.0"​,
	»	 ​elixir:​ ​"​​~> 1.6-dev"​,
	»	 ​start_permanent:​ Mix.env() == ​:prod​,
	»	 ​deps:​ deps()
	»]
	»	​end​

(We don’t have to change the @vsn value—the representation of the
server’s state is not affected by this change.)

After exhaustive testing, we decide we’re ready to create a new
release. Here we have a choice. If we just run mix release we’ll
create a whole new releasable application. To deploy it, we’d
basically copy it just as we did before, then stop the old app and
start the new one.

The alternative is to deploy an upgrade release
(sometimes called a hot upgrade). This is code that will
upgrade the application while it is still running—there should be no
downtime. This is one reason why Elixir apps can achieve such high
availability numbers. Let’s take the upgrade path:
	​ 	​$ ​​mix​​ ​​release​​ ​​--env=prod​​ ​​--upgrade​
	​ 	==> Assembling release..
	​ 	==> Building release sequence:0.2.0 using environment prod
	​ 	==> Including ERTS 9.1 from /usr/local/Cellar/erlang/20.1/lib/erlang/erts-9.1
	»	==> Generated .appup for sequence 0.1.0 -> 0.2.0
	​ 	==> Relup successfully created
	​ 	==> Packaging release..
	​ 	==> Release successfully built!
	​ 	 You can run it in one of the following ways:
	​ 	 Interactive: _build/dev/rel/sequence/bin/sequence console
	​ 	 Foreground: _build/dev/rel/sequence/bin/sequence foreground
	​ 	 Daemon: _build/dev/rel/sequence/bin/sequence start

The key thing to note is the creation of the .appup file. This is
what tells the Erlang runtime how to upgrade our running app.
Deploying an Upgrade

The deployment of the first release of an app is special: it has to
create an environment for that app. With that in place, this release
(and all subsequent releases) will be slightly different. We have to
create a release directory on the server and copy the tarball into it.
The directory will be under deploy/releases, and will be named the
same as the release’s version number.
	​ 	​$ ​​ssh​​ ​​localhost​​ ​​mkdir​​ ​​deploy/releases/0.2.0​
	​ 	​$ ​​scp​​ ​​_build/dev/rel/sequence/releases/0.2.0/sequence.tar.gz​​ ​​\​
	​ 	​ ​​localhost:deploy/releases/0.2.0​

Now let’s upgrade the running code:
	​ 	​$ ​​ssh​​ ​​localhost​​ ​​~/deploy/bin/sequence​​ ​​upgrade​​ ​​0.2.0​
	​ 	Release 0.2.0 not found, attempting to unpack releases/0.2.0/sequence.tar.gz
	​ 	Unpacked successfully: "0.2.0"
	​ 	Release 0.2.0 is already unpacked, now installing.
	​ 	Installed Release: 0.2.0
	​ 	Made release permanent: "0.2.0"

Head back over to the terminal session that’s talking to the app.
Don’t restart it—just make another request:
	​ 	iex(sequence@127.0.0.1)4> Sequence.Server.next_number
	​ 	"The next number is 458"
	​ 	iex(sequence@127.0.0.1)5> Sequence.Server.next_number
	​ 	"The next number is 459"

Erlang can actually run two versions of a module at the same time.
Currently executing code will continue to use the old version until
that code explicitly cites the name of the module that has changed. At
that point, and for that particular process, execution will swap to
the new version.

This is a critical part of hot loading of code. We want to let code
that is currently running continue without interruption, but the new
release may not be compatible with it. So Erlang lets it run on the
old release. But the next request will reference the module
explicitly, and the new code will be loaded.

Here, when we say Sequence.Server.next_number, the reference
to Sequence.Server triggers the reload, so the 0.2.0 release handles
the next request.

What if our new release was a disaster? That’s not a problem—we can
always downgrade to a previous version.
	​ 	​$ ​​ssh​​ ​​localhost​​ ​​~/deploy/bin/sequence​​ ​​downgrade​​ ​​0.1.0​
	​ 	Release 0.1.0 is already unpacked
	​ 	Release 0.1.0 is marked old, switching to it.
	​ 	Installed Release: 0.1.0
	​ 	Made release permanent: "0.1.0"

	​ 	Warning: "/Users/dave/deploy/releases/0.0.1/relup" missing (optional)
	​ 	
	​ 	iex(sequence@127.0.0.1)6> Sequence.Server.next_number
	​ 	460
	​ 	iex(sequence@127.0.0.1)7> Sequence.Server.next_number
	​ 	461

Cool. Let’s go back to the current version before continuing.
	​ 	​$ ​​ssh​​ ​​localhost​​ ​​~/deploy/bin/sequence​​ ​​upgrade​​ ​​0.2.0​

Migrating Server State

Our boss calls. We’re about to go for a second round of funding for our
wildly successful sequence-server business, but customers have
noticed a bug. We implemented increment_number to add a delta to the
current number—a one-time change. But apparently it was instead
supposed to set the difference between successive numbers we served.

Let’s try the existing code in our already-running console:
	​ 	iex(sequence@127.0.0.1)8> Sequence.Server.next_number
	​ 	The next number is 462
	​ 	iex(sequence@127.0.0.1)9> Sequence.Server.increment_number 10
	​ 	:ok
	​ 	iex(sequence@127.0.0.1)10> Sequence.Server.next_number
	​ 	The next number is 472
	​ 	iex(sequence@127.0.0.1)10> Sequence.Server.next_number
	​ 	The next number is 473

Yup, we’re applying the delta only once.

Well, that’s an easy change to the code. We simply have to keep one extra
thing in the state—a delta value. Here’s the updated server code:
otp-app/sequence_v2/lib/sequence/server.ex
	​ 	​defmodule​ Sequence.Server ​do​
	​ 	 ​use​ GenServer
	​ 	 ​require​ Logger
	​ 	
	​ 	 @vsn ​"​​1"​
	​ 	
	​ 	 ​defmodule​ State ​do​
	​ 	 defstruct(​current_number:​ 0, ​delta:​ 1)
	​ 	 ​end​
	​ 	
	​ 	 ​#####​
	​ 	 ​# External API​
	​ 	
	​ 	 ​def​ start_link(_) ​do​
	​ 	 GenServer.start_link(__MODULE__, nil, ​name:​ __MODULE__)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ next_number ​do​
	​ 	 ​with​ number = GenServer.call(__MODULE__, ​:next_number​),
	​ 	 ​do​: ​"​​The next number is ​​#{​number​}​​"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ increment_number(delta) ​do​
	​ 	 GenServer.cast __MODULE__, {​:increment_number​, delta}
	​ 	 ​end​
	​ 	
	​ 	 ​#####​
	​ 	 ​# GenServer implementation​
	​ 	
	​ 	 ​def​ init(_) ​do​
	​ 	 state = %State{ ​current_number:​ Sequence.Stash.get() }
	​ 	 { ​:ok​, state }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_call(​:next_number​, _from, state = %{​current_number:​ n}) ​do​
	​ 	 { ​:reply​, n, %{state | ​current_number:​ n + state.delta} }
	​ 	 ​end​
	​ 	
	​ 	 ​def​ handle_cast({​:increment_number​, delta}, state) ​do​
	​ 	 { ​:noreply​, %{state | ​delta:​ delta }}
	​ 	 ​end​
	​ 	
	​ 	 ​def​ terminate(_reason, current_number) ​do​
	​ 	 Sequence.Stash.update(current_number)
	​ 	 ​end​
	​ 	
	​ 	​end​

The big change is that we made the state a struct rather than a tuple
and added the delta value. We updated the increment handler to change
the value of delta, and the next number handler now adds in the delta
each time.

The format of the state changed, so we updated the version number (@vsn) to 1.

If we simply stop the old server and start the new one, we’ll lose the
state stored in the old one. But we can’t just copy the state
across—the old server had a single integer and the new one has a
struct.

Fortunately, OTP has a callback for this. In the new server, implement
the code_change function.
otp-app/sequence_v2/lib/sequence/server.ex
	​ 	​def​ code_change(​"​​0"​, old_state = current_number, _extra) ​do​
	​ 	 new_state = %State{
	​ 	 ​current_number:​ current_number,
	​ 	 ​delta:​ 1
	​ 	 }
	​ 	 Logger.info ​"​​Changing code from 0 to 1"​
	​ 	 Logger.info inspect(old_state)
	​ 	 Logger.info inspect(new_state)
	​ 	 { ​:ok​, new_state }
	​ 	​end​

The callback takes three arguments—the old version number, the old
state, and an additional parameter we don’t use. The callback’s job is
to return {:ok, new_state}. In our case, the new state is a
struct containing the stash PID and the old current number, along with
the new delta value, initialized to 1. We’ll need to bump
the version number in mix.exs.
otp-app/sequence_v2/mix.exs
	​ 	​def​ project ​do​
	​ 	 [
	​ 	 ​app:​ ​:sequence​,
	»	 ​version:​ ​"​​0.3.0"​,
	​ 	 ​elixir:​ ​"​​~> 1.6-dev"​,
	​ 	 ​start_permanent:​ Mix.env() == ​:prod​,
	​ 	 ​deps:​ deps()
	​]
	​ 	​end​

Time to create the new release:
	​ 	mix release --env=prod --upgrade
	​ 	==> Assembling release..
	​ 	==> Building release sequence:0.3.0 using environment prod
	​ 	==> Including ERTS 9.1 from /usr/local/Cellar/erlang/20.1/lib/erlang/erts-9.1
	​ 	==> Generated .appup for sequence 0.2.0 -> 0.3.0
	​ 	==> Relup successfully created
	​ 	==> Packaging release..
	​ 	==> Release successfully built!
	​ 	 You can run it in one of the following ways:
	​ 	 Interactive: _build/dev/rel/sequence/bin/sequence console
	​ 	 Foreground: _build/dev/rel/sequence/bin/sequence foreground
	​ 	 Daemon: _build/dev/rel/sequence/bin/sequence start

Copy it into the deployment location:
	​ 	​$ ​​ssh​​ ​​localhost​​ ​​mkdir​​ ​​~/deploy/releases/0.3.0/​
	​ 	​$ ​​scp​​ ​​_build/dev/rel/sequence/releases/0.3.0/sequence.tar.gz​​ ​​\​
	​ 	​ ​​localhost:deploy/releases/0.3.0/​

Cross your fingers, and upgrade the app:
	​ 	​$ ​​ssh​​ ​​localhost​​ ​​~/deploy/bin/sequence​​ ​​upgrade​​ ​​0.3.0​
	​ 	Release 0.3.0 not found, attempting to unpack releases/0.3.0/sequence.tar.gz
	​ 	Unpacked successfully: "0.3.0"
	​ 	Release 0.3.0 is already unpacked, now installing.
	​ 	Installed Release: 0.3.0
	​ 	Made release permanent: "0.3.0"

But the real magic happened over in the console window:
	​ 	16:03:12.096 [info] Changing code from 0 to 1
	​ 	16:03:12.096 [info] 459
	​ 	16:03:12.096 [info] %Sequence.Server.State{current_number: 459, delta: 1}

That’s the logging we added to our code_change function. We
seem to have migrated the server’s state into our new structure. Let’s
try it out:
	​ 	iex(sequence@127.0.0.1)10> Sequence.Server.next_number
	​ 	"The next number is 459"
	​ 	iex(sequence@127.0.0.1)11> Sequence.Server.increment_number 10
	​ 	:ok
	​ 	iex(sequence@127.0.0.1)13> Sequence.Server.next_number
	​ 	"The next number is 460"
	​ 	iex(sequence@127.0.0.1)14> Sequence.Server.next_number
	​ 	"The next number is 470"

That’s the new behavior, running with our new state structure. We
updated the code twice and migrated data once, all while the
application continued to run. There was no service disruption, and no
loss of data.

Plutarch records the story of a ship called Theseus. Over the course
of many years most of the ship’s structure was replaced, piece by
piece. While this was happening, the ship was in continuous use. Plutarch
raises the question, “Is the renovated Theseus the same as the
original?”

Using Elixir release management, our applications can work the same
way the Theseus did, running continuously but being updated all the
time.

Is the latest application the same as the original? Who cares, as long
as it’s still running?

OTP Is Big—Unbelievably Big

This book barely scratches OTP’s surface. But (I hope) it does
introduce the major concepts and give you an idea of what’s possible.

More advanced uses of OTP may include release management (including
hot code-swapping), handling of distributed failover, automated scaling,
and so on. But if you have an application that
needs such things, you likely will already have or will soon need
dedicated operations experts who know the low-level details of making
OTP apps perform the way you need them to.

There is never anything simple about scaling out to the kind of size
and sophistication that is possible with OTP. But now you know
 you can start small and get there.

However, there are ways of writing some OTP servers more simply, and
that’s the subject of the next chapter.

Your Turn
	Exercise: OTP-Applications-3

Our boss notices that after we applied our version-0-to-version-1
code change, the delta indeed works as specified. However, she also
notices that if the server crashes, the delta is forgotten—only the
current number is retained. Create a new release that stashes both
values.

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 21
Tasks and Agents

This part of the book is about processes and process distribution. So
far we’ve covered two extremes. In the first chapters we looked at
the spawn primitive, along with message sending and receiving and
multinode operations. We then looked at OTP, the 800-pound gorilla of
process architecture.

Sometimes, though, we want something in the middle. We want to be able
to run simple processes, either for background processing or for
maintaining state. But we don’t want to be bothered with the low-level
details of spawn, send, and receive, and we really don’t need the
extra control that writing our own GenServer gives us.

Enter tasks and agents, two simple-to-use Elixir
abstractions. These use OTP’s features but insulate us from these details.

Tasks

An Elixir task is a function that runs in the background.
tasks/tasks1.exs
	​ 	​defmodule​ Fib ​do​
	​ 	 ​def​ of(0), ​do​: 0
	​ 	 ​def​ of(1), ​do​: 1
	​ 	 ​def​ of(n), ​do​: Fib.of(n-1) + Fib.of(n-2)
	​ 	​end​
	​ 	
	​ 	IO.puts ​"​​Start the task"​
	​ 	worker = Task.async(​fn​ -> Fib.of(20) ​end​)
	​ 	IO.puts ​"​​Do something else"​
	​ 	​# ...​
	​ 	IO.puts ​"​​Wait for the task"​
	​ 	result = Task.await(worker)
	​ 	
	​ 	IO.puts ​"​​The result is ​​#{​result​}​​"​

The call to Task.async creates a separate process that runs the
given function. The return value of async is a task descriptor
(actually a PID and a ref) that we’ll use to identify the task later.

Once the task is running, the code continues with other work. When it
wants to get the function’s value, it calls Task.await, passing
in the task descriptor. This call waits for our background task to
finish and returns its value.

When we run this, we see
	​ 	​$ ​​elixir​​ ​​tasks1.exs​
	​ 	Start the task
	​ 	Do something else
	​ 	Wait for the task
	​ 	The result is 6765

We can also pass Task.async the name of a module and function,
along with any arguments. Here are the changes:
tasks/tasks2.exs
	​ 	worker = Task.async(Fib, ​:of​, [20])
	​ 	result = Task.await(worker)
	​ 	IO.puts ​"​​The result is ​​#{​result​}​​"​

Tasks and Supervision

Tasks are implemented as OTP servers, which means we can add them to
our application’s supervision tree. We can do this in a number of ways.

First, we can link a task to a currently supervised process by calling
start_link instead of async. This has less impact than you might
think. If the function running in the task crashes and we use
start_link, our process will be terminated immediately. If instead
we use async, our process will be terminated only when we
subsequently call await on the crashed task.

The second way to supervise tasks is to run them directly from a
supervisor. Here we specify the Task module itself as the module to run, and pass it the function to be run in the background as a parameter.
	​ 	children = [
	​ 	 { Task, ​fn​ -> do_something_extraordinary() ​end​ }
	​]
	​ 	
	​ 	Supervisor.start_link(children, ​strategy:​ ​:one_for_one​)

You can take this approach a step further by moving the task’s code
out of the supervisor and into its own module.
tasks/my_app/lib/my_app/my_task.ex
	​ 	​defmodule​ MyApp.MyTask ​do​
	​ 	 ​use​ Task
	​ 	
	​ 	 ​def​ start_link(param) ​do​
	​ 	 Task.start_link(__MODULE__, ​:thing_to_run​, [param])
	​ 	 ​end​
	​ 	
	​ 	 ​def​ thing_to_run(param) ​do​
	​ 	 IO.puts ​"​​running task with ​​#{​param​}​​"​
	​ 	 ​end​
	​ 	​end​

The key thing here is use Task. This defines a child_spec
function, allowing this module to be supervised:
	​ 	children = [
	​ 	{ MyApp.MyTask, 123 }
	​]

The problem with this approach is that you can’t use Task.await,
because your code is not directly calling Task.async.

The solution to this is to supervise the tasks dynamically. This is
similar in concept to using a :simple_one_for_one supervisor
strategy for regular servers. See the Task
documentation for details.[37]

However, before you get too carried away, remember that a simple
start_link in an already-supervised process may well be all you
need.

Agents

An agent is a background process that maintains state. This state can be accessed at different places within a process or node, or across multiple nodes.

The initial state is set by a function we pass in when we start the agent.

We can interrogate the state using Agent.get, passing it the agent descriptor and a function. The agent runs the function on its current state and returns the result.

We can also use Agent.update to change the state held by an agent. As with the get operator, we pass in a function. Unlike with get, the function’s result becomes the new state.

Here’s a bare-bones example. We start an agent whose state is the
integer 0. We then use the identity function, &(&1), to return that
state. Calling Agent.update with &(&1+1) increments the state, as
verified by a subsequent get.
	​ 	​iex>​ { ​:ok​, count } = Agent.start(​fn​ -> 0 ​end​)
	​ 	{:ok, #PID<0.69.0>}
	​ 	​iex>​ Agent.get(count, &(&1))
	​ 	0
	​ 	​iex>​ Agent.update(count, &(&1+1))
	​ 	:ok
	​ 	​iex>​ Agent.update(count, &(&1+1))
	​ 	:ok
	​ 	​iex>​ Agent.get(count, &(&1))
	​ 	2

In the previous example, the variable count holds the agent
process’s PID. We can also give agents a local or global name and
access them using this name. In this case we exploit the fact that an
uppercase bareword in Elixir is converted into an atom with the prefix
Elixir., so when we say Sum it is actually the atom :Elixir.Sum.
	​ 	​iex>​ Agent.start(​fn​ -> 1 ​end​, ​name:​ Sum)
	​ 	{:ok, #PID<0.78.0>}
	​ 	​iex>​ Agent.get(Sum, &(&1))
	​ 	1
	​ 	​iex>​ Agent.update(Sum, &(&1+99))
	​ 	:ok
	​ 	​iex>​ Agent.get(Sum, &(&1))
	​ 	100

The following example shows a more typical use. The Frequency module
maintains a list of word/frequency pairs in a map. The dictionary
itself is stored in an agent, which is named after the module.

This is all initialized with the start_link function, which, presumably, is
invoked during application initialization.
tasks/agent_dict.exs
	​ 	​defmodule​ Frequency ​do​
	​ 	
	​ 	 ​def​ start_link ​do​
	​ 	 Agent.start_link(​fn​ -> %{} ​end​, ​name:​ __MODULE__)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ add_word(word) ​do​
	​ 	 Agent.update(__MODULE__,
	​ 	 ​fn​ map ->
	​ 	 Map.update(map, word, 1, &(&1+1))
	​ 	 ​end​)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ count_for(word) ​do​
	​ 	 Agent.get(__MODULE__, ​fn​ map -> map[word] ​end​)
	​ 	 ​end​

	​ 	 ​def​ words ​do​
	​ 	 Agent.get(__MODULE__, ​fn​ map -> Map.keys(map) ​end​)
	​ 	 ​end​
	​ 	
	​ 	​end​

We can play with this code in IEx.
	​ 	​iex>​ c ​"​​agent_dict.exs"​
	​ 	[Frequency]
	​ 	​iex>​ Frequency.start_link
	​ 	{:ok, #PID<0.101.0>}
	​ 	​iex>​ Frequency.add_word ​"​​dave"​
	​ 	:ok
	​ 	​iex>​ Frequency.words
	​ 	["dave"]
	​ 	​iex(41)>​ Frequency.add_word ​"​​was"​
	​ 	:ok
	​ 	​iex>​ Frequency.add_word ​"​​here"​
	​ 	:ok
	​ 	​iex>​ Frequency.add_word ​"​​he"​
	​ 	:ok
	​ 	​iex>​ Frequency.add_word ​"​​was"​
	​ 	:ok
	​ 	​iex>​ Frequency.words
	​ 	["he", "dave", "was", "here"]
	​ 	​iex>​ Frequency.count_for(​"​​dave"​)
	​ 	1
	​ 	​iex>​ Frequency.count_for(​"​​was"​)
	​ 	2

In a way, you can look at our Frequency module as the implementation
part of a gen_server—using agents has simply abstracted away all the
housekeeping we had to do.

A Bigger Example

Let’s rewrite our anagram code to use both tasks and an agent.

We’ll load words in parallel from a number of separate
dictionaries. A separate task handles each dictionary. We’ll use
an agent to store the resulting list of words and signatures.
tasks/anagrams.exs
	​ 	​defmodule​ Dictionary ​do​
	​ 	
	​ 	 @name __MODULE__
	​ 	
	​ 	 ​##​
	​ 	 ​# External API​

	​ 	 ​def​ start_link,
	​ 	 ​do​: Agent.start_link(​fn​ -> %{} ​end​, ​name:​ @name)
	​ 	
	​ 	 ​def​ add_words(words),
	​ 	 ​do​: Agent.update(@name, &do_add_words(&1, words))
	​ 	
	​ 	 ​def​ anagrams_of(word),
	​ 	 ​do​: Agent.get(@name, &Map.get(&1, signature_of(word)))
	​ 	
	​ 	 ​##​
	​ 	 ​# Internal implementation​
	​ 	
	​ 	 ​defp​ do_add_words(map, words),
	​ 	 ​do​: Enum.reduce(words, map, &add_one_word(&1, &2))
	​ 	
	​ 	 ​defp​ add_one_word(word, map),
	​ 	 ​do​: Map.update(map, signature_of(word), [word], &[word|&1])
	​ 	
	​ 	 ​defp​ signature_of(word),
	​ 	 ​do​: word |> to_charlist |> Enum.sort |> to_string
	​ 	
	​ 	​end​
	​ 	
	​ 	​defmodule​ WordlistLoader ​do​
	​ 	 ​def​ load_from_files(file_names) ​do​
	​ 	 file_names
	​ 	 |> Stream.map(​fn​ name -> Task.async(​fn​ -> load_task(name) ​end​) ​end​)
	​ 	 |> Enum.map(&Task.await/1)
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ load_task(file_name) ​do​
	​ 	 File.stream!(file_name, [], ​:line​)
	​ 	 |> Enum.map(&String.trim/1)
	​ 	 |> Dictionary.add_words
	​ 	 ​end​
	​ 	​end​

Our four wordlist files contain the following:
	list1	list2	list3	list4
	
	​ 	angor
	​ 	argon
	​ 	caret
	​ 	carte
	​ 	cater
	​ 	crate
	​ 	creat
	​ 	creta

	
	​ 	ester
	​ 	estre
	​ 	goran
	​ 	grano
	​ 	groan
	​ 	leapt
	​ 	nagor
	​ 	orang

	
	​ 	palet
	​ 	patel
	​ 	pelta
	​ 	petal
	​ 	pleat
	​ 	react
	​ 	recta
	​ 	reest

	
	​ 	rogan
	​ 	ronga
	​ 	steer
	​ 	stere
	​ 	stree
	​ 	terse
	​ 	tsere
	​ 	tepal

Let’s run it:
	​ 	$ iex anagrams.exs
	​ 	​iex>​ Dictionary.start_link
	​ 	{:ok, #PID<0.66.0>}
	​ 	​iex>​ Enum.map(1..4, &​"​​words/list​​#{​&1​}​​"​) |> WordlistLoader.load_from_files
	​ 	[:ok, :ok, :ok, :ok]
	​ 	​iex>​ Dictionary.anagrams_of ​"​​organ"​
	​ 	["ronga", "rogan", "orang", "nagor", "groan", "grano", "goran",
	​ 	 "argon", "angor"]

Making It Distributed

Agents and tasks run as OTP servers, so they are easy to distribute—just
give our agent a
globally accessible name. That’s a one-line change:
	​ 	@name {​:global​, __MODULE__}

Now we’ll load our code into two separate nodes and connect
them. (Remember that we have to specify names for the nodes so they can talk.)
	Window #1

	

	​ 	$ iex --sname one anagrams_dist.exs
	​ 	iex(one@FasterAir)>

	Window #2

	

	​ 	$ iex --sname two anagrams_dist.exs
	​ 	iex(two@FasterAir)> Node.connect :one@FasterAir
	​ 	true
	​ 	iex(two@FasterAir)> Node.list
	​ 	[:one@FasterAir]

We’ll start the dictionary agent in node one—this is where the
actual dictionary will end up. We’ll then load the
dictionary using both nodes one and two:
	Window #1

	

	​ 	iex(one@FasterAir)> Dictionary.start_link
	​ 	{:ok, #PID<0.68.0>}
	​ 	iex(one@FasterAir)> WordlistLoader.load_from_files(~w{words/list1 words/list2})
	​ 	[:ok, :ok]

	Window #2

	

	​ 	iex(two@FasterAir)> WordlistLoader.load_from_files(~w{words/list3 words/list4})
	​ 	[:ok, :ok]

Finally, we’ll query the agent from both nodes:
	Window #1

	

	​ 	iex(one@FasterAir)> Dictionary.anagrams_of "argon"
	​ 	["ronga", "rogan", "orang", "nagor", "groan", "grano", "goran", "argon",
	​ 	 "angor"]

	Window #2

	

	​ 	iex(two@FasterAir)> Dictionary.anagrams_of "crate"
	​ 	["recta", "react", "creta", "creat", "crate", "cater", "carte",
	​ 	"caret"]

Agents and Tasks, or GenServer?

When do you use agents and tasks, and when do you use a GenServer?

The answer is to use the simplest approach that works. Agents and
tasks are great when you’re dealing with very specific background
activities, whereas GenServers (as their name suggests) are more
general.

You can eliminate the need to make a decision by wrapping your agents
and tasks in modules, as we did in our anagram example. That way you
can always switch from the agent or task implementation to the
full-blown GenServer without affecting the rest of the code base.

It’s time to move on and look at some advanced Elixir.

Footnotes

	[37]
	
https://hexdocs.pm/elixir/Task.html

Copyright © 2018, The Pragmatic Bookshelf.

Part 3
More Advanced Elixir

 Among the joys of Elixir is that it laughs at the concept of
 “what you see is what you get.” Instead, you can extend it in
 many different ways. This allows you to add layers of
 abstraction to your code, which makes your
 code easier to work with.

 This part covers macros (which let you extend the language’s
 syntax), protocols (which let you add behaviors to existing
 modules), and use (which lets you add capabilities
 to a module). We finish with a grab-bag chapter of
 miscellaneous Elixir tricks and tips.

 Chapter
 22
Macros and Code Evaluation

Have you ever felt frustrated that a language didn’t
have just the right feature for some code you were writing? Or have you found yourself repeating chunks of code that weren’t amenable to
factoring into functions? Or have you just wished you could program
closer to your problem domain?

If so, then you’ll love this chapter.

But, before we get into the details, here’s a warning: macros can
easily make your code harder to understand, because you’re essentially
rewriting parts of the language. For that reason, never use a macro
when you could use a function. Let’s repeat that:
	

 	

Never use a macro when you could use a function.

In fact, you’ll probably not write a macro in regular application
code. But if you’re writing a library and want to use some of the
metaprogramming techniques that we show in later chapters,
you’ll need to know how macros work.

Implementing an if Statement

Let’s imagine that Elixir didn’t have an if statement—that all it has is
case. Although we’re prepared to abandon our old friend the while
loop, not having an if statement is just too much to bear, so we set
about implementing one.

We’ll want to call it using something like
	​ 	myif condition do
	​ 	 evaluate if true
	​ 	else
	​ 	 evaluate if false
	​ 	end

We know that blocks in Elixir are converted into keyword
parameters, so this is equivalent to
	​ 	myif condition,
	​ 	 do: evaluate if true,
	​ 	 else: evaluate if false

Here’s a sample call:
	​ 	My.myif 1==2, ​do​: (IO.puts ​"​​1 == 2"​), ​else​: (IO.puts ​"​​1 != 2"​)

Let’s try to implement myif as a function:
	​ 	​defmodule​ My ​do​
	​ 	 ​def​ myif(condition, clauses) ​do​
	​ 	 do_clause = Keyword.get(clauses, ​:do​, nil)
	​ 	 else_clause = Keyword.get(clauses, ​:else​, nil)
	​ 	
	​ 	 ​case​ condition ​do​
	​ 	 val ​when​ val ​in​ [false, nil]
	​ 	 -> else_clause
	​ 	 _otherwise
	​ 	 -> do_clause
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

When we run it, we’re (mildly) surprised to get the following
output:
	​ 	​iex>​ My.myif 1==2, ​do​: (IO.puts ​"​​1 == 2"​), ​else​: (IO.puts ​"​​1 != 2"​)
	​ 	1 == 2
	​ 	1 != 2
	​ 	:ok

When we call the myif function, Elixir has to evaluate all of its
parameters before passing them in. So both the do: and else:
clauses are evaluated, and we see their output. Because IO.puts
returns :ok on success, what actually gets passed to myif is
	​ 	myif 1==2, ​do​: ​:ok​, ​else​: ​:ok​

This is why the final return value is :ok.

We need a way of delaying the execution of these clauses. This is where macros come in. But before we implement our myif
macro, we need a little background.

Macros Inject Code

Let’s pretend we’re the Elixir compiler. We read a
module’s source top to bottom and generate a representation of the code we
find. That representation is a nested Elixir tuple.

If we want to support macros, we need a way to tell the compiler that
we’d like to manipulate a part of that tuple. We do that using
defmacro, quote, and unquote.

In the same way that def defines a function, defmacro
defines a macro. You’ll see what that looks like shortly. However, the
real magic starts not when we define a macro, but when we use one.

When we pass parameters to a macro, Elixir doesn’t evaluate
them. Instead, it passes them as tuples representing their code. We
can examine this behavior using a simple macro definition that prints
out its parameter.
macros/dumper.exs
	​ 	​defmodule​ My ​do​
	​ 	 ​defmacro​ macro(param) ​do​
	​ 	 IO.inspect param
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defmodule​ Test ​do​
	​ 	 ​require​ My
	​ 	
	​ 	 ​# These values represent themselves​
	​ 	 My.macro ​:atom​ ​#=> :atom​
	​ 	 My.macro 1 ​#=> 1​
	​ 	 My.macro 1.0 ​#=> 1.0​
	​ 	 My.macro [1,2,3] ​#=> [1,2,3]​
	​ 	 My.macro ​"​​binaries"​ ​#=> "binaries"​
	​ 	 My.macro { 1, 2 } ​#=> {1,2}​
	​ 	 My.macro ​do​: 1 ​#=> [do: 1]​
	​ 	
	​ 	 ​# And these are represented by 3-element tuples​
	​ 	
	​ 	 My.macro { 1,2,3,4,5 }
	​ 	 ​# => {:"{}",[line: 20],[1,2,3,4,5]}​
	​ 	
	​ 	 My.macro ​do​: (a = 1; a+a)
	​ 	 ​# => [do:​
	​ 	 ​# {:__block__,[],​
	​ 	 ​# [{:=,[line: 22],[{:a,[line: 22],nil},1]},​
	​ 	 ​# {:+,[line: 22],[{:a,[line: 22],nil},{:a,[line: 22],nil}]}]}]​
	​ 	
	​ 	
	​ 	 My.macro ​do​
	​ 	 1+2
	​ 	 ​else​
	​ 	 3+4
	​ 	 ​end​
	​ 	 ​# => [do: {:+,[line: 24],[1,2]},​
	​ 	 ​# else: {:+,[line: 26],[3,4]}]​
	​ 	
	​ 	​end​

This shows us that atoms, numbers, lists (including keyword lists),
binaries, and tuples with two elements are represented internally as
themselves. All other Elixir code is represented by a three-element
tuple. Right now, the internals of that representation aren’t
important.
Load Order

You may be wondering about the structure of the preceding code. We put the
macro definition in one module, and the usage of that macro in
another. And that second module included a require call.

Macros are expanded before a program executes, so the macro defined in
one module must be available as Elixir is compiling another module
that uses those macros. The require function tells Elixir to ensure the
named module is compiled before the current one. In practice it
is used to make the macros defined in one module available in another.

But the reason for the two modules is less clear. It has to do with the
fact that Elixir first compiles source files
and then runs them.

If we have one module per source file and we reference a module in
file A from file B, Elixir will load the module from A, and everything
just works. But if we have a module and the code that uses it in the
same file, and the module is defined in the same scope in which we
use it, Elixir will not know to load the module’s code. We’ll get this
error:
	​ 	** (CompileError)
	​ 	 .../dumper.ex:7:
	​ 	 module My is not loaded but was defined. This happens because you
	​ 	 are trying to use a module in the same context it is defined. Try
	​ 	 defining the module outside the context that requires it.

By placing the code that uses the module My in a separate module, we
force My to load.
The quote Function

We’ve seen that when we pass parameters to a macro they are not
evaluated. The language comes with a function, quote, that also
forces code to remain in its unevaluated form. quote takes a block
and returns the internal representation of that block. We can play
with it in IEx:
	​ 	​iex>​ ​quote​ ​do​: ​:atom​
	​ 	:atom
	​ 	​iex>​ ​quote​ ​do​: 1
	​ 	1
	​ 	​iex>​ ​quote​ ​do​: 1.0
	​ 	1.0
	​ 	​iex>​ ​quote​ ​do​: [1,2,3]
	​ 	[1,2,3]
	​ 	​iex>​ ​quote​ ​do​: ​"​​binaries"​
	​ 	"binaries"
	​ 	​iex>​ ​quote​ ​do​: {1,2}
	​ 	{1,2}
	​ 	​iex>​ ​quote​ ​do​: [​do​: 1]
	​ 	[do: 1]
	​ 	​iex>​ ​quote​ ​do​: {1,2,3,4,5}
	​ 	{:"{}",[],[1,2,3,4,5]}
	​ 	​iex>​ ​quote​ ​do​: (a = 1; a + a)
	​ 	{:__block__, [],
	​ 	 [{:=, [], [{:a, [], Elixir}, 1]},
	​ 	 {:+, [context: Elixir, import: Kernel],
	​ 	 [{:a, [], Elixir}, {:a, [], Elixir}]}]}
	​ 	​iex>​ ​quote​ ​do​: [​do​: 1 + 2, ​else​: 3 + 4]
	​ 	[do: {:+, [context: Elixir, import: Kernel], [1, 2]},
	​ 	 else: {:+, [context: Elixir, import: Kernel], [3, 4]}]

There’s another way to think about quote. When we write "abc", we
create a binary containing a string. The double quotes say, “interpret
what follows as a string of characters and return the appropriate
representation.”

quote is the same: it says, “interpret the content of the block that
follows as code, and return the internal representation.”

Using the Representation as Code

When we extract the internal representation of some code (either via a
macro parameter or using quote), we stop Elixir from adding it
automatically to the tuples of code it is building during
compilation—we’ve effectively created a free-standing island of code.
How do we inject that code back into our program’s internal representation?

There are two ways.

The first is our old friend the macro. Just like with a function, the value
a macro returns is the last expression evaluated in that
macro. That expression is expected to be a fragment of code in
Elixir’s internal representation. But Elixir does not return this
representation to the code that invoked the macro. Instead it injects
the code back into the internal representation of our program and
returns to the caller the result of executing that code. But that
execution takes place only if needed.

We can demonstrate this in two steps. First, here’s a macro that
simply returns its parameter (after printing it out). The code we give
it when we invoke the macro is passed as an internal representation,
and when the macro returns that code, that representation is injected
back into the compile tree.
macros/eg.exs
	​ 	​defmodule​ My ​do​
	​ 	 ​defmacro​ macro(code) ​do​
	​ 	 IO.inspect code
	​ 	 code
	​ 	 ​end​
	​ 	​end​
	​ 	​defmodule​ Test ​do​
	​ 	 ​require​ My
	​ 	 My.macro(IO.puts(​"​​hello"​))
	​ 	​end​

When we run this, we see
	​ 	{{:.,[​line:​ 11],[{​:__aliases__​,[​line:​ 11],[​:IO​]},​:puts​]}, [​line:​ 11],[​"​​hello"​]}
	​ 	hello

Now we’ll change that file to return a different piece of code. We use
quote to generate the internal form:
macros/eg1.exs
	​ 	​defmodule​ My ​do​
	​ 	 ​defmacro​ macro(code) ​do​
	​ 	 IO.inspect code
	​ 	 ​quote​ ​do​: IO.puts ​"​​Different code"​
	​ 	 ​end​
	​ 	​end​
	​ 	​defmodule​ Test ​do​
	​ 	 ​require​ My
	​ 	 My.macro(IO.puts(​"​​hello"​))
	​ 	​end​

This generates
	​ 	{{:.,[line: 11],[{:__aliases__,[line: 11],[:IO]},:puts]}, [line: 11],["hello"]}
	​ 	Different code

Even though we passed IO.puts("hello") as a parameter, it was never
executed by Elixir. Instead, it ran the code fragment we returned using quote.

Before we can write our version of if, we need one more trick—the ability
to substitute existing code into a quoted block. There are two ways of doing this:
by using the unquote function and with bindings.
The unquote Function

Let’s get two things out of the way. First, we can use unquote only
inside a quote block. Second, unquote is a silly name. It should
really be something like inject_code_fragment.

Let’s see why we need this. Here’s a simple macro that tries to output
the result of evaluating the code we pass it:
	​ 	​defmacro​ macro(code) ​do​
	​ 	 ​quote​ ​do​
	​ 	 IO.inspect(code)
	​ 	 ​end​
	​ 	​end​

Unfortunately, when we run it, it reports an error:
	​ 	** (CompileError).../eg2.ex:11: function code/0 undefined

Inside the quote block, Elixir is just parsing regular code, so the
name code is inserted literally into the code fragment it
returns. But we don’t want that. We want Elixir to insert the
evaluation of the code we pass in. And that’s where we use
unquote. It temporarily turns off quoting and simply injects a
code fragment into the sequence of code being returned by quote.
	​ 	​defmodule​ My ​do​
	​ 	 ​defmacro​ macro(code) ​do​
	​ 	 ​quote​ ​do​
	​ 	 IO.inspect(​unquote​(code))
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

Inside the quote block, Elixir is busy parsing the code and
generating its internal representation. But when it hits the
unquote, it stops parsing and simply copies the code parameter
into the generated code. After unquote, it goes back to regular
parsing.

There’s another way of thinking about this. Using unquote inside a
quote is a way of deferring the execution of the unquoted code. It
doesn’t run when the quote block is parsed. Instead it runs when the
code generated by the quote block is executed.

Or, we can think in terms of our quote-as-string-literal analogy. In
this case, we can make a (slightly tenuous) case that unquote is a
little like the interpolation we can do in strings. When we write
"sum=#{1+2}", Elixir evaluates 1+2 and interpolates the result
into the quoted string. When we write quote do: def unquote(name) do
end, Elixir interpolates the contents of name into the code
representation it is building as part of the list.
Expanding a List—unquote_splicing

Consider this code:
	​ 	​iex>​ Code.eval_quoted(​quote​ ​do​: [1,2,​unquote​([3,4])])
	​ 	{[1,2,[3,4]],[]}

The list [3,4] is inserted, as a list, into the overall quoted list,
resulting in [1,2,[3,4]].

If we instead wanted to insert just the elements of the list, we could
use unquote_splicing.
	​ 	​iex>​ Code.eval_quoted(​quote​ ​do​: [1,2,unquote_splicing([3,4])])
	​ 	{[1,2,3,4],[]}

Remembering that single-quoted strings are lists of characters, this
means we can write
	​ 	​iex>​ Code.eval_quoted(​quote​ ​do​: [​?a​, ​?=​ ,unquote_splicing(​'1234'​)])
	​ 	{'a=1234',[]}

Back to Our myif Macro

We now have everything we need to implement an if macro.
macros/myif.ex
	​ 	​defmodule​ My ​do​
	​ 	 ​defmacro​ ​if​(condition, clauses) ​do​
	​ 	 do_clause = Keyword.get(clauses, ​:do​, nil)
	​ 	 else_clause = Keyword.get(clauses, ​:else​, nil)
	​ 	 ​quote​ ​do​
	​ 	 ​case​ ​unquote​(condition) ​do​
	​ 	 val ​when​ val ​in​ [false, nil] -> ​unquote​(else_clause)
	​ 	 _ -> ​unquote​(do_clause)
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​

	​ 	​defmodule​ Test ​do​
	​ 	 ​require​ My
	​ 	 My.​if​ 1==2 ​do​
	​ 	 IO.puts ​"​​1 == 2"​
	​ 	 ​else​
	​ 	 IO.puts ​"​​1 != 2"​
	​ 	 ​end​
	​ 	​end​

It’s worth studying this code.

The if macro receives a condition and a keyword list. The
condition and any entries in the keyword list are passed as code
fragments.

The macro extracts the do: and/or else: clauses from that list. It
is then ready to generate the code for our if statement, so it opens
a quote block. That block contains an Elixir case expression. This
case expression has to evaluate the condition that is passed in, so it
uses unquote to inject that condition’s code as its parameter.

When Elixir executes this case statement, it evaluates the condition.
At that point, case will match the first clause if the
result is nil or false; otherwise it matches the second
clause. When a clause matches (and only then), we want to execute the
code that was passed in either the do: or else: values in the
keyword list, so we use unquote again to inject that code into the
case.

Your Turn
	Exercise: MacrosAndCodeEvaluation-1

Write a macro called myunless that implements the standard
unless functionality. You’re allowed to use the regular if
expression in it.

	Exercise: MacrosAndCodeEvaluation-2

Write a macro called times_n that takes a single numeric argument.
It should define a function called times_n in the caller’s module that itself
takes a single argument, and that multiplies that argument by
n. So, calling
times_n(3) should create a function called times_3, and calling
times_3(4) should return 12. Here’s an example of it in use:
	​ 	​defmodule​ Test ​do​
	​ 	 ​require​ Times
	​ 	 Times.times_n(3)
	​ 	 Times.times_n(4)
	​ 	​end​
	​ 	
	​ 	IO.puts Test.times_3(4) ​#=> 12​
	​ 	IO.puts Test.times_4(5) ​#=> 20​

Using Bindings to Inject Values

Remember that there are two ways of injecting values into quoted
blocks. One is unquote. The other is to use a binding. However,
the two have different uses and different semantics.

A binding is simply a keyword list of variable names and their
values. When we pass a binding to quote, the variables are
set inside the body of that quote.

This is useful because macros are executed at compile time. This means
 they don’t have access to values that are calculated at runtime.

Here’s an example. The intent is to have a macro that defines a function
that returns its own name:
	​ 	​defmacro​ mydef(name) ​do​
	​ 	 ​quote​ ​do​
	​ 	 ​def​ ​unquote​(name)(), ​do​: ​unquote​(name)
	​ 	 ​end​
	​ 	​end​

We try this out using something like mydef(:some_name). Sure enough,
that defines a function that, when called, returns :some_name.

Buoyed by our success, we try something more ambitious:
macros/macro_no_binding.exs
	​ 	​defmodule​ My ​do​
	​ 	 ​defmacro​ mydef(name) ​do​
	​ 	 ​quote​ ​do​
	​ 	 ​def​ ​unquote​(name)(), ​do​: ​unquote​(name)
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defmodule​ Test ​do​
	​ 	 ​require​ My
	​ 	 [​:fred​, ​:bert​] |> Enum.each(&My.mydef(&1))
	​ 	​end​
	​ 	
	​ 	IO.puts Test.fred

And we’re rewarded with this:
	​ 	macro_no_binding.exs:12: invalid syntax in def _@1()

At the time the macro is called, the each loop hasn’t yet executed,
so we have no valid name to pass it. This is where bindings come in:
macros/macro_binding.exs
	​ 	​defmodule​ My ​do​
	​ 	 ​defmacro​ mydef(name) ​do​
	​ 	 ​quote​ ​bind_quoted:​ [​name:​ name] ​do​
	​ 	 ​def​ ​unquote​(name)(), ​do​: ​unquote​(name)
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defmodule​ Test ​do​
	​ 	 ​require​ My
	​ 	 [​:fred​, ​:bert​] |> Enum.each(&My.mydef(&1))
	​ 	​end​
	​ 	
	​ 	IO.puts Test.fred ​#=> fred​

Two things happen here. First, the binding makes the current value of
name available inside the body of the quoted block. Second, the
presence of the bind_quoted: option automatically defers the execution
of the unquote calls in the body. This way, the methods are defined
at runtime.

As its name implies, bind_quoted takes a quoted code
fragment. Simple things such as tuples are the same as normal and
quoted code, but for most values you probably want to quote them or
use Macro.escape to ensure that your code fragment will be
interpreted correctly.

Macros Are Hygienic

It is tempting to think of macros as some kind of textual
substitution—a macro’s body is expanded as text and then
compiled at the point of call. But that’s not the case. Consider this
example:
macros/hygiene.ex
	​ 	​defmodule​ Scope ​do​
	​ 	 ​defmacro​ update_local(val) ​do​
	​ 	 local = ​"​​some value"​
	​ 	 result = ​quote​ ​do​
	​ 	 local = ​unquote​(val)
	​ 	 IO.puts ​"​​End of macro body, local = ​​#{​local​}​​"​
	​ 	 ​end​
	​ 	 IO.puts ​"​​In macro definition, local = ​​#{​local​}​​"​
	​ 	 result
	​ 	 ​end​
	​ 	​end​

	​ 	​defmodule​ Test ​do​
	​ 	 ​require​ Scope
	​ 	
	​ 	 local = 123
	​ 	 Scope.update_local(​"​​cat"​)
	​ 	 IO.puts ​"​​On return, local = ​​#{​local​}​​"​
	​ 	​end​

Here’s the result of running that code:
	​ 	In macro definition, local = some value
	​ 	End of macro body, local = cat
	​ 	On return, local = 123

If the macro body were just substituted in at the point of call, both
it and the module Test would share the same scope, and the macro
would overwrite the variable local, so we’d see
	​ 	In macro definition, local = some value
	​ 	End of macro body, local = cat
	​ 	On return, local = cat

But that isn’t what happens. Instead, the macro definition has both its
own scope and a scope during execution of the quoted macro body. Both
are distinct from the scope within the Test module. The upshot
is that macros will not clobber each other’s variables or the
variables of modules and functions that use them.

The import and alias functions are also locally scoped. See the
documentation for quote for a full description. This also
describes how to turn off hygiene for variables and how to control
the stack trace’s format if things go wrong while executing a
macro.

Other Ways to Run Code Fragments

We can use the function Code.eval_quoted to evaluate code
fragments, such as those returned by quote.
	​ 	​iex>​ fragment = ​quote​ ​do​: IO.puts(​"​​hello"​)
	​ 	{{:.,[],[{:__aliases__,[alias: false],[:IO]},:puts]},[],["hello"]}
	​ 	​iex>​ Code.eval_quoted fragment
	​ 	hello
	​ 	{:ok,[]}

By default, the quoted fragment is hygienic, and so does not have
access to variables outside its scope. Using var!(:name), we can
disable this feature and allow a quoted block to access variables in
the containing scope. In this case, we pass the binding to
eval_quoted as a keyword list.
	​ 	iex> fragment = ​quote​ ​do​: IO.puts(var!(a))
	​ 	{{:., [], [{​:__aliases__​, [​alias:​ false], [​:IO​]}, ​:puts​]}, [],
	​ 	 [{​:var!​, [​context:​ Elixir, ​import​: Kernel], [{​:a​, [], Elixir}]}]}
	​ 	iex> Code.eval_quoted fragment, [​a:​ ​"​​cat"​]
	​ 	cat
	​ 	{​:ok​,[​a:​ ​"​​cat"​]}

Code.string_to_quoted converts a string containing code to
its quoted form, and Macro.to_string converts a code fragment back
into a string.
	​ 	​iex>​ fragment = Code.string_to_quoted(​"​​defmodule A do def b(c) do c+1 end end"​)
	​ 	{:ok,{:defmodule,[line: 1],[{:__aliases__,[line: 1],[:A]},
	​ 	[do: {:def,[line: 1],[{:b,[line: 1],[{:c,[line: 1],nil}]},
	​ 	[do: {:+,[line: 1],[{:c,[line: 1],nil},1]}]]}]]}}
	​ 	​iex>​ Macro.to_string(fragment)
	​ 	"{:ok, defmodule(A) do\n def(b(c)) do\n c + 1\n end\nend}"

We can also evaluate a string directly using Code.eval_string.
	​ 	​iex>​ Code.eval_string(​"​​[a, a*b, c]"​, [​a:​ 2, ​b:​ 3, ​c:​ 4])
	​ 	{[2,6,4],[a: 2, b: 3, c: 4]}

Macros and Operators

(This is definitely dangerous ground.)

We can override the unary and binary operators in Elixir using
macros. To do so, we need to remove any existing definition
first.

For example, the operator + (which adds two numbers) is defined in
the Kernel module. To remove the Kernel definition and substitute our
own, we’d need to do something like the following (which redefines
addition to concatenate the string representation of the left and
right arguments).
macros/operators.ex
	​ 	​defmodule​ Operators ​do​
	​ 	 ​defmacro​ a + b ​do​
	​ 	 ​quote​ ​do​
	​ 	 to_string(​unquote​(a)) <> to_string(​unquote​(b))
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defmodule​ Test ​do​
	​ 	 IO.puts(123 + 456) ​#=> "579"​
	​ 	 ​import​ Kernel, ​except:​ [+: 2]
	​ 	 ​import​ Operators
	​ 	 IO.puts(123 + 456) ​#=> "123456"​
	​ 	​end​
	​ 	
	​ 	IO.puts(123 + 456) ​#=> "579"​

Note that the macro’s definition is
lexically scoped—the + operator is overridden from the point when we
import the Operators module through the end of the module that
imports it. We could also have done the import inside a single method,
and the scoping would be just that method.

Digging Deeper

The Code and Macro modules contain the functions that manipulate the internal representation of code.

Check the source of the Kernel module for a list of the
majority of the operator macros, along with macros for things such as
def, defmodule, alias, and so on. If we look at the source
code, we’ll see the calling sequence for these. However, many
of the bodies will be absent, as the macros are defined within the
Elixir source.

Digging Ridiculously Deep

Here’s the internal representation of a simple expression:
	​ 	​iex(1)>​ ​quote​ ​do​: 1 + 2
	​ 	{:+, [context: Elixir, import: Kernel], [1, 2]}

It’s just a three-element tuple. In this particular case, the first
element is the function (or macro), the second is housekeeping
metadata, and the third is the arguments.

We know we can evaluate this code fragment using eval_quoted,
and we can save typing by leaving off the metadata:
	​ 	​iex>​ Code.eval_quoted {​:+​, [], [1,2]}
	​ 	{3,[]}

And now we can start to see the promise (and danger) of a homoiconic
language (a language in which the internal representation is expressed in the language itself). Because code is just tuples and because we can
manipulate those tuples, we have the ability to rewrite the definitions
of existing functions. We can create new code on the fly, and we can do
it in a safe way because we can control the scope of both the changes
and the access to variables.

Next we’ll look at protocols, a way of adding
functionality to built-in code and of integrating our code
into other people’s modules.

Your Turn
	Exercise: MacrosAndCodeEvaluation-3

The Elixir test framework, ExUnit, uses some clever code-quoting tricks.
For example, if you assert
	​ 	assert 5 < 4

you’ll get the error
	​ 	Assertion with < failed
	​ 	code: 5 < 4
	​ 	lhs: 5
	​ 	rhs: 4

The test code parsed the assertion parameter into the left-hand
side, the operator, and the right-hand side.

The Elixir source code is on GitHub (at
https://github.com/elixir-lang/elixir). The
implementation of this is in the file
elixir/lib/ex_unit/lib/ex_unit/assertions.ex. Spend some time
reading this file, and work out how it implements this trick.

(Hard) Once you’ve done that, see if you can use the same technique to
implement a function that takes an arbitrary arithmetic expression
and returns a natural-language version.
	​ 	explain do: 2 + 3 * 4
	​ 	#=> multiply 3 and 4, then add 2

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 23
Linking Modules: Behavio(u)rs and use

When we wrote our OTP server, we wrote a module that started with the code
	​ 	​defmodule​ Sequence.Server ​do​
	​ 	 ​use​ GenServer
	​ 	 ...

In this chapter we’ll explore what lines such as use
GenServer actually do, and how we can write modules that
extend the capabilities of other modules that use them.

Behaviours

An Elixir behaviour is nothing more
than a list of functions. A module that declares that it implements a
particular behaviour must implement all of the associated functions.
If it doesn’t, Elixir will generate a compilation warning. You can
think of a behaviour definition as being like an abstract base class
in some object-oriented languages.

A behaviour is therefore a little like an interface in Java. A
module uses it to declare that it implements a particular
interface. For example, an OTP GenServer should implement a standard
set of callbacks (handle_call, handle_cast, and so on). By
declaring that our module implements that behaviour, we let the
compiler validate that we have actually supplied the necessary
interface. This reduces the chance of an unexpected runtime error.
Defining Behaviours

We define a behaviour with @callback definitions.

For example, the mix utility can fetch dependencies from various
source-code control systems. Out of the box, it supports git and the
local filesystem. However, the interface to the source-code control
system (which mix abbreviates internally as SCM) is defined using a
behaviour, allowing new version-control systems to be added cleanly.

The behaviour is defined in the module Mix.Scm:
	​ 	​defmodule​ Mix.SCM ​do​
	​ 	 @moduledoc ​"""​
	​ 	​ This module provides helper functions and defines the behaviour​
	​ 	​ required by any SCM used by Mix.​
	​ 	​ """​
	​ 	
	​ 	 @type opts :: Keyword.t
	​ 	
	​ 	 @doc ​"""​
	​ 	​ Returns a boolean if the dependency can be fetched or it is meant to​
	​ 	​ be previously available in the filesystem.​
	​ 	
	​ 	​ Local dependencies (i.e. non fetchable ones) are automatically​
	​ 	​ recompiled every time the parent project is compiled.​
	​ 	​ """​
	​ 	 @callback fetchable? :: boolean
	​ 	
	​ 	 @doc ​"""​
	​ 	​ Returns a string representing the SCM. This is used when printing​
	​ 	​ the dependency and not for inspection, so the amount of information​
	​ 	​ should be concise and easy to spot.​
	​ 	​ """​
	​ 	 @callback format(opts) :: String.t
	​ 	
	​ 	 ​# and so on for 8 more callbacks​

This module defines the interface that modules implementing the
behaviour must support. It uses @callback to define the functions in
the behaviour. But the syntax looks a little different. That’s because
we’re using a minilanguage: Erlang type specifications. For example,
the fetchable? function takes no parameters and returns a Boolean.
The format function takes a parameter of type opts (which is
defined near the top of the code to be a keyword list) and returns a
string.
There’s
more information on these type specifications here.

In addition to the type specification, we can include module- and
function-level documentation with our behaviour definitions.
Declaring Behaviours

Now that we’ve defined the behaviour, we can declare that another module
implements it using the @behaviour attribute. Here’s the start of
the Git implementation for mix:
	​ 	​defmodule​ Mix.SCM.Git ​do​
	​ 	 @behaviour Mix.SCM
	​ 	
	​ 	 ​def​ fetchable? ​do​
	​ 	 true
	​ 	 ​end​
	​ 	
	​ 	 ​def​ format(opts) ​do​
	​ 	 opts[​:git​]
	​ 	 ​end​
	​ 	
	​ 	 ​# . . .​
	​ 	​end​

The module defines each of the functions declared as callbacks in Mix.SCM.
This module will compile cleanly. However, imagine we’d misspelled
fetchable:
	​ 	​defmodule​ Mix.SCM.Git ​do​
	​ 	 @behaviour Mix.SCM
	​ 	
	»	 ​def​ fetchible? ​do​
	​ 	 true
	​ 	 ​end​
	​ 	
	​ 	 ​def​ format(opts) ​do​
	​ 	 opts[​:git​]
	​ 	 ​end​
	​ 	
	​ 	 ​# . . .​
	​ 	​end​

When we compile the module, we’d get this error:
	​ 	git.ex:1: warning: undefined behaviour function fetchable?/0 (for behaviour Mix.SCM)

Behaviours give us a way of both documenting and enforcing the
public functions that a module should implement.
Taking It Further

In the implementation of Mix.SCM for Git, we created a bunch of
functions that implemented the behaviour. But those are unlikely to be
the only functions in this module. And, unless you’re intimately
familiar with the Mix.SCM behaviour, you won’t be able to tell the
callback functions from the rest.

To remedy this, you can flag the callback functions with the @impl
attribute. This takes a parameter: either true or the name of a
behaviour (guess which one I prefer).
	​ 	​defmodule​ Mix.SCM.Git ​do​
	​ 	 @behaviour Mix.SCM
	​ 	
	​ 	 ​def​ init(arg) ​do​ ​# plain old function​
	​ 	 ​# ...​
	​ 	 ​end​
	​ 	
	​ 	 @impl Mix.SCM ​# callback​
	​ 	 ​def​ fetchable? ​do​
	​ 	 true
	​ 	 ​end​
	​ 	
	​ 	 @impl Mix.SCM ​# callback​
	​ 	 ​def​ format(opts) ​do​
	​ 	 opts[​:git​]
	​ 	 ​end​

use and __using__

In one sense, use is a trivial function. You pass it a module along
with an optional argument, and it invokes the function or macro
__using__ in that module, passing it the argument.

Yet this simple interface gives you a powerful extension
facility. For example, in our unit tests we write use ExUnit.Case
and we get the test macro and assertion support. When we write an
OTP server, we write use GenServer and we get both a
behaviour that documents the gen_server callback and default
implementations of those callbacks.

Typically, the __using__ callback will be implemented as a macro, as
it will be used to invoke code in the original module.

Putting It Together—Tracing Method Calls

Let’s work through a larger example. We want to write a module called
Tracer. If we use Tracer in another module, entry and exit tracing
will be added to any subsequently defined function. For example, given
the following:
use/tracer.ex
	​ 	​defmodule​ Test ​do​
	​ 	 ​use​ Tracer
	​ 	 ​def​ puts_sum_three(a,b,c), ​do​: IO.inspect(a+b+c)
	​ 	 ​def​ add_list(list), ​do​: Enum.reduce(list, 0, &(&1+&2))
	​ 	​end​
	​ 	
	​ 	Test.puts_sum_three(1,2,3)
	​ 	Test.add_list([5,6,7,8])

we’d get this output:
	​ 	==> call puts_sum_three(1, 2, 3)
	​ 	6
	​ 	<== returns 6
	​ 	==> call add_list([5,6,7,8])
	​ 	<== returns 26

My approach to writing this kind of code is to start by exploring what
we have to work with, and then to generalize. The goal is to
metaprogram as little as possible.

It looks as if we have to override the def macro, which is defined in Kernel.
So let’s do that and see what gets passed to def when we define a
method.
use/tracer1.ex
	​ 	​defmodule​ Tracer ​do​
	​ 	 ​defmacro​ ​def​(definition, ​do​: _content) ​do​
	​ 	 IO.inspect definition
	​ 	 ​quote​ ​do​: {}
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defmodule​ Test ​do​
	​ 	 ​import​ Kernel, ​except:​ [​def​: 2]
	​ 	 ​import​ Tracer, ​only:​ [​def​: 2]
	​ 	
	​ 	 ​def​ puts_sum_three(a,b,c), ​do​: IO.inspect(a+b+c)
	​ 	 ​def​ add_list(list), ​do​: Enum.reduce(list, 0, &(&1+&2))
	​ 	​end​
	​ 	
	​ 	Test.puts_sum_three(1,2,3)
	​ 	Test.add_list([5,6,7,8])

This outputs
	​ 	{:puts_sum_three, [line: 12],
	​ 	 [{:a, [line: 12], nil}, {:b, [line: 12], nil}, {:c, [line: 12], nil}]}
	​ 	{:add_list, [line: 13], [{:list, [line: 13], nil}]}
	​ 	** (UndefinedFunctionError) undefined function: Test.puts_sum_three/3

The definition part of each method is a three-element tuple. The
first element is the name, the second is the line on which it is defined,
and the third is a list of the parameters, where each parameter is itself
a tuple.

We also get an error: puts_sum_three is undefined. That’s not
surprising—we intercepted the def that defined it, and we didn’t
create the function.

You may be wondering about the form of the macro definition:
defmacro def(definition, do: _content)…. The do: in the parameters
is not special syntax: it’s a pattern match on the block passed
as the function body, which is a keyword list.

You may also be wondering if we have affected the
built-in Kernel.def macro. The answer is no. We’ve created another
macro, also called def, which is defined in the scope of the
Tracer module. In our Test module we tell Elixir not to import
the Kernel version of def but instead to import the version from
Tracer. Shortly, we’ll make use of the fact that the original
Kernel implementation is unaffected.

Let’s see if we can define a real function given this
information. That turns out to be surprisingly easy. We already have
the two arguments passed to def. All we have to do is pass them on.
use/tracer2.ex
	​ 	​defmodule​ Tracer ​do​
	​ 	 ​defmacro​ ​def​(definition, ​do​: content) ​do​
	​ 	 ​quote​ ​do​
	​ 	 Kernel.​def​(​unquote​(definition)) ​do​
	​ 	 ​unquote​(content)
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defmodule​ Test ​do​
	​ 	 ​import​ Kernel, ​except:​ [​def​: 2]
	​ 	 ​import​ Tracer, ​only:​ [​def​: 2]
	​ 	
	​ 	 ​def​ puts_sum_three(a,b,c), ​do​: IO.inspect(a+b+c)
	​ 	 ​def​ add_list(list), ​do​: Enum.reduce(list, 0, &(&1+&2))
	​ 	​end​
	​ 	
	​ 	Test.puts_sum_three(1,2,3)
	​ 	Test.add_list([5,6,7,8])

When we run this, we see 6, the output from puts_sum_three.

Now it’s time to add some tracing.
use/tracer3.ex
	​ 	​defmodule​ Tracer ​do​
	​ 	 ​def​ dump_args(args) ​do​
	​ 	 args |> Enum.map(&inspect/1) |> Enum.join(​"​​, "​)
	​ 	 ​end​
	​ 	
	​ 	
	​ 	 ​def​ dump_defn(name, args) ​do​
	​ 	 ​"​​#{​name​}​​(​​#{​dump_args(args)​}​​)"​
	​ 	 ​end​
	​ 	
	​ 	 ​defmacro​ ​def​(definition={name,_,args}, ​do​: content) ​do​
	​ 	 ​quote​ ​do​
	​ 	 Kernel.​def​(​unquote​(definition)) ​do​
	​ 	 IO.puts ​"​​==> call: ​​#{​Tracer.dump_defn(​unquote​(name), ​unquote​(args))​}​​"​
	​ 	 result = ​unquote​(content)
	​ 	 IO.puts ​"​​<== result: ​​#{​result​}​​"​
	​ 	 result
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defmodule​ Test ​do​
	​ 	 ​import​ Kernel, ​except:​ [​def​: 2]
	​ 	 ​import​ Tracer, ​only:​ [​def​: 2]
	​ 	
	​ 	 ​def​ puts_sum_three(a,b,c), ​do​: IO.inspect(a+b+c)
	​ 	 ​def​ add_list(list), ​do​: Enum.reduce(list, 0, &(&1+&2))
	​ 	​end​
	​ 	
	​ 	Test.puts_sum_three(1,2,3)
	​ 	Test.add_list([5,6,7,8])

Looking good:
	​ 	==> call: puts_sum_three(1, 2, 3)
	​ 	6
	​ 	<== result: 6
	​ 	==> call: add_list([5,6,7,8])
	​ 	<== result: 26

Let’s package our Tracer module so clients only have to add
use Tracer to their own modules. We’ll implement the __using__
callback. The tricky part here is differentiating between the two
modules: Tracer and the module that uses it.
use/tracer4.ex
	​ 	​defmodule​ Tracer ​do​
	​ 	
	​ 	 ​def​ dump_args(args) ​do​
	​ 	 args |> Enum.map(&inspect/1) |> Enum.join(​"​​, "​)
	​ 	 ​end​
	​ 	
	​ 	 ​def​ dump_defn(name, args) ​do​
	​ 	 ​"​​#{​name​}​​(​​#{​dump_args(args)​}​​)"​
	​ 	 ​end​
	​ 	
	​ 	 ​defmacro​ ​def​(definition={name,_,args}, ​do​: content) ​do​
	​ 	 ​quote​ ​do​
	​ 	 Kernel.​def​(​unquote​(definition)) ​do​
	​ 	 IO.puts ​"​​==> call: ​​#{​Tracer.dump_defn(​unquote​(name), ​unquote​(args))​}​​"​
	​ 	 result = ​unquote​(content)
	​ 	 IO.puts ​"​​<== result: ​​#{​result​}​​"​
	​ 	 result
	​ 	 ​end​
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​defmacro​ __using__(_opts) ​do​
	​ 	 ​quote​ ​do​
	​ 	 ​import​ Kernel, ​except:​ [​def​: 2]
	​ 	 ​import​ ​unquote​(__MODULE__), ​only:​ [​def​: 2]
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defmodule​ Test ​do​
	​ 	 ​use​ Tracer
	​ 	 ​def​ puts_sum_three(a,b,c), ​do​: IO.inspect(a+b+c)
	​ 	 ​def​ add_list(list), ​do​: Enum.reduce(list, 0, &(&1+&2))
	​ 	​end​
	​ 	
	​ 	Test.puts_sum_three(1,2,3)
	​ 	Test.add_list([5,6,7,8])

Use use

Elixir behaviours are fantastic—they let you easily inject
functionality into modules you write. And they’re not just for library
creators—use them in your own code to cut down on duplication and
boilerplate.

Although behaviours let you add to modules that you are writing, you sometimes need to extend the functionality of modules
written by others—code that you can’t change. Fortunately, Elixir
comes with protocols, the subject of the next chapter.

Your Turn
	Exercise: LinkingModules-BehavioursAndUse-1

In the body of the def macro, there’s a quote block that defines
the actual method. It contains
	​ 	IO.puts ​"​​==> call: ​​#{​Tracer.dump_dfn(​unquote​(name), ​unquote​(args))​}​​"​
	​ 	result = ​unquote​(content)
	​ 	IO.puts ​"​​<== result: ​​#{​result​}​​"​

Why does the first call to puts have to unquote the values in its
interpolation but the second call does not?

	Exercise: LinkingModules-BehavioursAndUse-2

The built-in module IO.ANSI defines functions that represent ANSI
escape sequences. You can use it to build output than will display
(for example) colors and bold, inverse, or underlined text (assuming the
terminal supports it).
	​ 	iex> ​import​ IO.ANSI
	​ 	iex> IO.puts [​"​​Hello, "​, white(), green_background(), ​"​​world!"​]
	​ 	Hello, world!

Explore the module, and use it to colorize our tracing’s output.

Why does passing a list of strings to IO.puts work?

	Exercise: LinkingModules-BehavioursAndUse-3

(Hard) Try adding a method definition with a guard clause to the
Test module. You’ll find that the tracing no longer works.
	Find out why.
	See if you can fix it.

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 24
Protocols—Polymorphic Functions

We have used the inspect function many times in this book. It
returns a printable representation of any value as a binary (which is
what we hard-core folks call strings).

But stop and think for a minute. Just how can Elixir, which doesn’t
have objects, know what to call to do the conversion to
a binary? You can pass inspect anything, and Elixir somehow makes sense
of it.

It could be done using guard clauses:
	​ 	def inspect(value) when is_atom(value), do: ...
	​ 	def inspect(value) when is_binary(value), do: ...
	​ 	 : :

But there’s a better way.

Elixir has the concept of protocols. A protocol is a little like the
behaviours we saw in the previous chapter in that it defines the
functions that must be provided to achieve something. But a behaviour
is internal to a module—the module implements the behaviour. Protocols
are different—you can place a protocol’s implementation
completely outside the module. This means you can extend modules’
functionality without having to add code to them—in fact,
you can extend the functionality even if you don’t have the modules’ source code.

Defining a Protocol

Protocol definitions are very similar to basic module
definitions. They can contain module- and function-level documentation
(@moduledoc and @doc), and they will contain one or more function
definitions. However, these functions will not have bodies—they are
there simply to declare the interface that the protocol requires.

For example, here is the definition of the Inspect protocol:
	​ 	​defprotocol​ Inspect ​do​
	​ 	 @fallback_to_any true
	​ 	​def​ inspect(thing, opts)
	​ 	​end​

Just like a module, the protocol defines one or more
functions. But we implement the code separately.

Implementing a Protocol

The defimpl macro lets you give Elixir the implementation of a
protocol for one or more types. The code that follows is the
implementation of the Inspect protocol for PIDs and
references.
	​ 	​defimpl​ Inspect, ​for:​ PID ​do​
	​ 	 ​def​ inspect(pid, _opts) ​do​
	​ 	 ​"​​#​​PID"​ <> IO.iodata_to_binary(pid_to_list(pid))
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defimpl​ Inspect, ​for:​ Reference ​do​
	​ 	 ​def​ inspect(ref, _opts) ​do​
	​ 	 ​'#Ref'​ ++ rest = ​:erlang​.ref_to_list(ref)
	​ 	 ​"​​#​​Reference"​ <> IO.iodata_to_binary(rest)
	​ 	 ​end​
	​ 	​end​

Finally, the Kernel module implements inspect, which
calls Inspect.inspect with its parameter. This means that when you
call inspect(self), it becomes a call to Inspect.inspect(self). And
because self is a PID, this in turn resolves to something like
"#PID<0.25.0>".

Behind the scenes, defimpl puts the implementation for each protocol-and-type combination into a separate module. The protocol for
Inspect for the PID type is in the module
Inspect.PID. And because you can recompile modules, you can
change the implementation of functions accessed via protocols.
	​ 	​iex>​ inspect self
	​ 	"#PID<0.25.0>"
	​ 	​iex>​ ​defimpl​ Inspect, ​for:​ PID ​do​
	​ 	​...>​ ​def​ inspect(pid, _) ​do​
	​ 	​...>​ ​"​​#​​Process: "​ <> IO.iodata_to_binary(​:erlang​.pid_to_list(pid)) <> ​"​​!!"​
	​ 	​...>​ ​end​
	​ 	​...>​ ​end​
	​ 	iex:3: redefining module Inspect.PID
	​ 	{:module, Inspect.PID, <<70,79....
	​ 	​iex>​ inspect self
	​ 	"#Process: <0.25.0>!!"

The Available Types

You can define implementations for one or more of the following types:
	Any
	Atom
	BitString
	Float
	Function

	Integer
	List
	Map
	PID
	Port

	Record
	Reference
	Tuple
	
	

The type BitString is used in place of Binary.

The type Any is a catchall, allowing you to match an implementation
with any type. Just as with function definitions, you’ll want to put
the implementations for specific types before an implementation for
Any.

You can list multiple types on a single defimpl. For example, the
following protocol can be called to determine whether a type is a
collection:
protocols/is_collection.exs
	​ 	​defprotocol​ Collection ​do​
	​ 	 @fallback_to_any true
	​ 	 ​def​ is_collection?(value)
	​ 	​end​
	​ 	
	​ 	​defimpl​ Collection, ​for:​ [List, Tuple, BitString, Map] ​do​
	​ 	 ​def​ is_collection?(_), ​do​: true
	​ 	​end​
	​ 	
	​ 	​defimpl​ Collection, ​for:​ Any ​do​
	​ 	 ​def​ is_collection?(_), ​do​: false
	​ 	​end​
	​ 	
	​ 	Enum.each [1, 1.0, [1,2], {1,2}, %{}, ​"​​cat"​], ​fn​ value ->
	​ 	 IO.puts ​"​​#{​inspect value​}​​: ​​#{​Collection.is_collection?(value)​}​​"​
	​ 	​end​

We write defimpl stanzas for the collection types: List,
Tuple, BitString, and Map. But what about the other types? To handle those, we
use the special type Any in a second defimpl. If we use Any,
though, we also have to add an annotation to the protocol
definition. That’s what the @fallback_to_any line does.

This produces
	​ 	1: false
	​ 	1.0: false
	​ 	[1,2]: true
	​ 	{1,2}: true
	​ 	%{}: true
	​ 	"cat": true

Your Turn
	Exercise: Protocols-1

A basic Caesar cypher consists of shifting the letters in a message
by a fixed offset. For an offset of 1, for example, a will become b,
b will become c, and z will become a. If the offset is 13, we have
the ROT13 algorithm.

Lists and binaries can be stringlike. Write a Caesar
protocol that applies to both. It would include two functions:
encrypt(string, shift) and rot13(string).

	Exercise: Protocols-2

Using a list of words in your language, write a program to
look for words where the result of calling
rot13(word) is also a word in the list. (For various
English word lists, look at
http://wordlist.sourceforge.net/. The SCOWL collection
looks promising, as it already has words divided by size.)

Protocols and Structs

Elixir doesn’t have classes, but (perhaps surprisingly) it does have
user-defined types. It pulls off this magic using structs and a few
conventions.

Let’s play with a simple struct. Here’s the definition:
protocols/basic.exs
	​ 	​defmodule​ Blob ​do​
	​ 	 defstruct ​content:​ nil
	​ 	​end​

And here we use it in IEx:
	​ 	​iex>​ c ​"​​basic.exs"​
	​ 	[Blob]
	​ 	​iex>​ b = %Blob{​content:​ 123}
	​ 	%Blob{content: 123}
	​ 	​iex>​ inspect b
	​ 	"%Blob{content: 123}"

It looks for all the world as if we’ve created some new type, the
blob. But that’s only because Elixir is hiding something from us. By
default, inspect recognizes structs. If we turn this off using the
structs: false option, inspect reveals the true nature of our blob
value:
	​ 	​iex>​ inspect b, ​structs:​ false
	​ 	"%{__struct__: Blob, content: 123}"

A struct value is actually just a map with the key __struct__
referencing the struct’s module (Blob in this case) and the
remaining elements containing the keys and values for this
instance. The inspect implementation for maps checks for this—if you
ask it to inspect a map containing a key __struct__ that references
a module, it displays it as a struct.

Many built-in types in Elixir are represented as
structs internally. It’s instructive to try creating values and
inspecting them with structs: false.

Built-in Protocols

Elixir comes with the following protocols:
	Enumerable and Collectable
	Inspect
	List.Chars
	String.Chars

To play with these, let’s work with MIDI files.

A MIDI file consists of a sequence of variable-length frames. Each
frame contains a four-character type, a 32-bit length, and then
length bytes of data.[38]

We’ll define a module that represents the MIDI file content as a
struct, because the struct lets us use it with protocols. The file also
defines a submodule for the individual frame structure.
protocols/midi.exs
	​ 	​defmodule​ Midi ​do​
	​ 	
	​ 	 defstruct(​content:​ <<>>)
	​ 	
	​ 	 ​defmodule​ Frame ​do​
	​ 	 defstruct(
	​ 	 ​type:​ ​"​​xxxx"​,
	​ 	 ​length:​ 0,
	​ 	 ​data:​ <<>>
	​)
	​ 	
	​ 	 ​def​ to_binary(%Midi.Frame{​type:​ type, ​length:​ length, ​data:​ data}) ​do​
	​ 	 <<
	​ 	 type::binary-4,
	​ 	 length::integer-32,
	​ 	 data::binary
	​ 	 >>
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ from_file(name) ​do​
	​ 	 %Midi{​content:​ File.read!(name)}
	​ 	 ​end​
	​ 	​end​

Built-in Protocols: Enumerable and Collectable

The Enumerable protocol is the basis of all the functions in the
Enum module—any type implementing it can be used as a collection
argument to Enum functions.

We’re going to implement Enumerable for our Midi structure, so
we’ll need to wrap the implementation in something like this:
	​ 	​defimpl​ Enumerable, ​for:​ Midi ​do​
	​ 	 ​# ...​
	​ 	​end​

The protocol is defined in terms of four functions:
	​ 	​defprotocol​ Enumerable ​do​
	​ 	 ​def​ count(collection)
	​ 	 ​def​ member?(collection, value)
	​ 	 ​def​ reduce(collection, acc, fun)
	​ 	 ​def​ slice(collection)
	​ 	​end​

count returns the number of elements in the collection, member? is
truthy if the collection contains value, and reduce applies the
given function to successive values in the collection and the
accumulator; the value it reduces becomes the next accumulator.
Finally, slice is used to create a subset of a collection. Perhaps
surprisingly, all the Enum functions can be defined in terms of
these four.

However, life isn’t that simple. Maybe you’re using Enum.find
to find a value in a large collection. Once you’ve found it, you want
to halt the iteration—continuing is pointless. Similarly, you may
want to suspend an iteration and resume it sometime later. These two
features become particularly important when we talk about streams, which
let you enumerate a collection lazily.

We’ll start with the most difficult function to implement,
Enumerable.reduce/3. It is worth reading the documentation for it
before we start:
	​ 	iex> h Enumerable.reduce
	​ 	
	​ 	 def reduce(enumerable, acc, fun)
	​ 	
	​ 	 @spec reduce(t(), acc(), reducer()) :: result()
	​ 	
	​ 	Reduces the enumerable into an element.
	​ 	
	​ 	Most of the operations in Enum are implemented in terms of reduce. This
	​ 	function should apply the given t:reducer/0 function to each item in the
	​ 	enumerable and proceed as expected by the returned accumulator.
	​ 	
	​ 	See the documentation of the types t:result/0 and t:acc/0 for more information.

	​ 	## Examples
	​ 	
	​ 	As an example, here is the implementation of reduce for lists:
	​ 	
	​ 	 def reduce(_, {:halt, acc}, _fun),
	​ 	 do: {:halted, acc}
	​ 	
	​ 	 def reduce(list, {:suspend, acc}, fun),
	​ 	 do: {:suspended, acc, &reduce(list, &1, fun)}
	​ 	
	​ 	 def reduce([], {:cont, acc}, _fun),
	​ 	 do: {:done, acc}
	​ 	
	​ 	 def reduce([h | t], {:cont, acc}, fun),
	​ 	 do: reduce(t, fun.(h, acc), fun)

The first two function heads do housekeeping: they handle the cases
where the enumeration has been halted or suspended. Here are the
versions for our MIDI enumerator:
protocols/midi.exs
	​ 	​def​ _reduce(_content, {​:halt​, acc}, _fun) ​do​
	​ 	 {​:halted​, acc}
	​ 	​end​
	​ 	
	​ 	​def​ _reduce(content, {​:suspend​, acc}, fun) ​do​
	​ 	 {​:suspended​, acc, &_reduce(content, &1, fun)}
	​ 	​end​

The next two function heads do the actual iteration. In the list
example in the documentation, you’ll see the typical pattern:
check for the end condition ([]) and the recursive step [h|t].

We’ll do the same with our MIDI file, but we’ll use binaries instead of doing list pattern matching:
protocols/midi.exs
	​ 	​def​ _reduce(_content = ​"​​"​, {​:cont​, acc}, _fun) ​do​
	​ 	 {​:done​, acc}
	​ 	​end​
	​ 	
	​ 	​def​ _reduce(<<
	​ 	 type::binary-4,
	​ 	 length::integer-32,
	​ 	 data::binary-size(length),
	​ 	 rest::binary
	​ 	 >>,
	​ 	 {​:cont​, acc},
	​ 	 fun
	​) ​do​
	​ 	 frame = %Midi.Frame{​type:​ type, ​length:​ length, ​data:​ data}
	​ 	 _reduce(rest, fun.(frame, acc), fun)
	​ 	​end​

See how we split out the binary content of a frame, then wrap it into
a Midi.Frame struct before passing it back. This means that folks
who use our MIDI module will only see these frame structures, and not
the raw data.

Before we try this, there’s one little tweak we have to make. You may
have noticed that all my functions were named _reduce, with a
leading underscore. That’s because they need to work on the content of
the MIDI file, and not on the structure that wraps that content. We
have a single function head that implements the actual reduce
function, and that then forwards the call on to _reduce:
protocols/midi.exs
	​ 	​def​ reduce(%Midi{​content:​ content}, state, fun) ​do​
	​ 	 _reduce(content, state, fun)
	​ 	​end​

At this point we have enough code to try it out. I’ve included a MIDI
file in the code/protocols directory for you to play with (courtesy
of midiworld.com).[39]
	​ 	iex midi.exs
	​ 	warning: function count/1 required by protocol Enumerable is not
	​ 	 implemented (in module Enumerable.Midi) midi.exs:21
	​ 	
	​ 	warning: function member?/2 required by protocol Enumerable is not
	​ 	 implemented (in module Enumerable.Midi) midi.exs:21
	​ 	
	​ 	warning: function slice/1 required by protocol Enumerable is not
	​ 	 implemented (in module Enumerable.Midi) midi.exs:21
	​ 	
	​ 	Interactive Elixir (1.6.0-rc.0) - press Ctrl+C to exit (type h() ENTER for help)
	​ 	​iex>​ midi = Midi.from_file(​"​​dueling-banjos.mid"​)
	​ 	%Midi{
	​ 	 content: <<77, 84, 104, 100, 0, 0, 0, 6, 0, 1, 0, 8, 0, 120, 77, 84, 114, 107,
	​ 	 0, 0, 0, 66, 0, 255, 3, 14, 68, 117, 101, 108, 105, 110, 103, 32, 66, 97,
	​ 	 110, 106, 111, 115, 0, 255, 3, 11, 68, 101, 108, 105, 118, ​...>​>
	​ 	}
	​ 	​iex>​ Enum.take(midi, 2)
	​ 	[
	​ 	 %Midi.Frame{data: <<0, 1, 0, 8, 0, 120>>, length: 6, type: "MThd"},
	​ 	 %Midi.Frame{
	​ 	 data: <<0, 255, 3, 14, 68, 117, 101, 108, 105, 110, 103, 32, 66, 97, 110,
	​ 	 106, 111, 115, 0, 255, 3, 11, 68, 101, 108, 105, 118, 101, 114, 97, 110,
	​ 	 99, 101, 0, 255, 88, 4, 4, 2, 24, 8, 0, 255, 89, 2, 0, 0, ​...>​>,
	​ 	 length: 66,
	​ 	 type: "MTrk"
	​ 	 }
	​]

First, see how we get warnings because we haven’t yet implemented the
full Enumerable protocol. Normally this would worry me, but I happen
to know that we won’t be using those functions just yet.

Next, look at how we called Enum.take/2 and got back two Midi.Frame
structures. That’s because take/2 is defined in terms of reduce/3,
and we supplied an implementation of it.

So far, so good. Let’s implement count/1 next.

If the collection is countable, the count function returns a tuple
containing {:ok, count}. If it isn’t countable (perhaps it is being
read one piece at a time from an external source), count should return
{:ok, __MODULE__}.

In our case, we have the whole MIDI file available in memory, and we
have a way to traverse it using reduce, so counting it easy:
protocols/midi.exs
	​ 	​def​ count(midi = %Midi{}) ​do​
	​ 	 frame_count = Enum.reduce(midi, 0, ​fn​ (_, count) -> count+1 ​end​)
	​ 	 { ​:ok​, frame_count }
	​ 	​end​

Let’s try it:
	​ 	​iex>​ r Enumerable.Midi
	​ 	warning: redefining module Midi (current version defined in memory)
	​ 	 midi.exs:2
	​ 	
	​ 	warning: redefining module Midi.Frame (current version defined in memory)
	​ 	 midi.exs:6
	​ 	
	​ 	warning: redefining module Enumerable.Midi (current version defined in memory)
	​ 	 midi.exs:21
	​ 	
	​ 	warning: function member?/2 required by protocol Enumerable is not
	​ 	 implemented (in module Enumerable.Midi) midi.exs:21
	​ 	
	​ 	warning: function slice/1 required by protocol Enumerable is not
	​ 	 implemented (in module Enumerable.Midi) midi.exs:21
	​ 	
	​ 	{:reloaded, Enumerable.Midi, [Midi.Frame, Midi, Enumerable.Midi]}
	​ 	​iex>​ Enum.count midi
	​ 	9

On to member? and slice.

Technically, both of these can be implemented using reduce. But the
Elixir team recognized that some types of collection have more direct
ways to test membership and partition elements. For example, if you
implement a set using a map, then testing to see if a key is present
can be done in constant time. If you have an array-like structure
with fixed-length elements, you can split it into two in (almost)
constant time.

So the implementations of both member? and slice depend on the
characteristics of your collection. In our case, we don’t currently
have a fast way of testing for membership, nor do we have a fast way
to slice a MIDI file into two. In both cases, we return an error
tuple. This doesn’t actually cause an error for the user; it just
tells Enumerable to fall back to a naive algorithm.
protocols/midi.exs
	​ 	​def​ member?(%Midi{}, %Midi.Frame{}) ​do​
	​ 	 { ​:error​, __MODULE__ }
	​ 	​end​
	​ 	
	​ 	​def​ slice(%Midi{}) ​do​
	​ 	 { ​:error​, __MODULE__ }
	​ 	​end​

And with that, we’re done. Our Midi type is enumerable, and you can
use every function in Enum on it.

This gives us the ability to treat a MIDI stream as a collection of MIDI
frames. But how do we assemble frames back into a MIDI stream?
That’s what we’ll address next.

Collectable

We’ve already seen Enum.into/2. It takes something that’s enumerable
and creates a new collection from it:
	​ 	​iex>​ 1..4 |> Enum.into([])
	​ 	[1, 2, 3, 4]
	​ 	​iex>​ [{1, 2}, {​"​​a"​, ​"​​b"​}] |> Enum.into(%{})
	​ 	%{1 => 2, "a" => "b"}

The target of Enum.into must implement the Collectable protocol.
This defines a single function, somewhat confusingly also called
into. This function returns a two-element tuple. The first element
is the initial value of the target collection. The second is a
function to be called to add each item to the collection. (If this
reminds you of the second and third parameters passed to
Enum.reduce, that’s because in a way into is the opposite of
reduce.)

Let’s look at the code first:
protocols/midi.exs
	​ 	​defimpl​ Collectable, ​for:​ Midi ​do​
	​ 	 ​use​ Bitwise

	​ 	 ​def​ into(%Midi{​content:​ content}) ​do​
	​ 	 {
	​ 	 content,
	​ 	 ​fn​
	​ 	 acc, {​:cont​, frame = %Midi.Frame{}} ->
	​ 	 acc <> Midi.Frame.to_binary(frame)
	​ 	
	​ 	 acc, ​:done​ ->
	​ 	 %Midi{​content:​ acc}
	​ 	
	​ 	 _, ​:halt​ ->
	​ 	 ​:ok​
	​ 	 ​end​
	​ 	 }
	​ 	 ​end​
	​ 	​end​

It works like this:
	
Enum.into calls the into function for Midi, passing it the
target value—Midi{content: content} in this case.

	
Midi.into returns a tuple. The first element is the current
content of the target. This acts as the initial value
for an accumulator. The second element of the tuple is a function.

	
Enum.into then calls this function, passing it the accumulator and
a command. If the command is :done, the iteration over the collection
being injected into the MIDI stream has finished, so we return a new
Midi structure using the accumulator as a value. If the command is :halt,
the iteration has terminated early and nothing needs to be done.

	
The real work is done when the function is passed the {:cont,
frame} command. Here is where the Collectable appends the binary
representation of the next
frame to the accumulator.

We can call it in IEx:
	​ 	​iex>​ list = Enum.to_list(midi)
	​ 	[
	​ 	 %Midi.Frame{data: <<0, 1, 0, 8, 0, 120>>, length: 6, type: "MThd"},
	​ 	 %Midi.Frame{
	​ 	 data: <<0, 255, 3, 14, 68, 117, 101, 108, 105, 110, 103, 32, 66, 97, 110,
	​ 	 106, 111, 115, 0, 255, 3, 11, 68, 101, 108, 105, 118, 101, 114, 97, 110,
	​ 	 99, 101, 0, 255, 88, 4, 4, 2, 24, 8, 0, 255, 89, 2, 0, 0, ​...>​>,
	​ 	 length: 66,
	​ 	 type: "MTrk"
	​ 	 },
	​ 	 . . .
	​]

	​ 	​iex>​ new_midi = Enum.into(list, %Midi{})
	​ 	%Midi{
	​ 	 content: <<77, 84, 104, 100, 0, 0, 0, 6, 0, 1, 0, 8, 0, 120, 77, 84, 114, 107,
	​ 	 0, 0, 0, 66, 0, 255, 3, 14, 68, 117, 101, 108, 105, 110, 103, 32, 66, 97,
	​ 	 110, 106, 111, 115, 0, 255, 3, 11, 68, 101, 108, 105, 118, ​...>​>
	​ 	}
	​ 	​iex>​ new_midi == midi
	​ 	true
	​ 	​iex>​ Enum.take(new_midi, 1)
	​ 	[%Midi.Frame{data: <<0, 1, 0, 8, 0, 120>>, length: 6, type: "MThd"}]

Because the into function uses the initial value of the target
collection, we can use it to append to a MIDI stream:
	​ 	​iex>​ midi2 = %Midi{}
	​ 	%Midi{content: ""}
	​ 	​iex>​ midi2 = Enum.take(midi, 1) |> Enum.into(midi2)
	​ 	%Midi{content: <<77, 84, 104, 100, 0, 0, 0, 6, 0, 1, 0, 8, 0, 120>>}
	​ 	​iex>​ midi2 = [Enum.at(midi, 3)] |> Enum.into(midi2)
	​ 	%Midi{
	​ 	 content: <<77, 84, 104, 100, 0, 0, 0, 6, 0, 1, 0, 8, 0, 120, 77, 84, 114, 107,
	​ 	 0, 0, 8, 34, 0, 255, 33, 1, 0, 0, 193, 25, 0, 177, 7, 127, 0, 10, 100, 0,
	​ 	 64, 0, 134, 24, 145, 43, 99, 22, 43, 0, 15, ​...>​>
	​ 	}
	​ 	​iex>​ Enum.count(midi2)
	​ 	2

Remember the Big Picture

If you think all this enumerable/collectable stuff is
complicated—well, you’re correct. It is. In part that’s because these
conventions allow all enumerable values to be used both eagerly and
lazily. And when you’re dealing with big (or even infinite)
collections, this is a big deal.

Built-in Protocols: Inspect

This is the protocol that is used to inspect a value. The rule is
simple—if you can return a representation that is a valid Elixir
literal, do so. Otherwise, prefix the representation with #Typename.

We could just delegate the inspect function to the Elixir
default. (That’s what we’ve been doing so far.) But we can do better.
Not surprisingly, we do that by implementing the Inspect protocol.
We’ll do it for both the overall Midi type and for the individual
Midi.Frames.
protocols/midi_inspect.exs
	​ 	​defimpl​ Inspect, ​for:​ Midi ​do​
	​ 	 ​def​ inspect(%Midi{​content:​ <<>>}, _opts) ​do​
	​ 	 ​"​​#​​Midi[«empty»]"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ inspect(midi = %Midi{}, _opts) ​do​
	​ 	 content =
	​ 	 Enum.map(midi, ​fn​ frame-> Kernel.inspect(frame) ​end​)
	​ 	 |> Enum.join(​"​​\n"​)
	​ 	 ​"​​#​​Midi[\n​​#{​content​}​​\n]"​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defimpl​ Inspect, ​for:​ Midi.Frame ​do​
	​ 	 ​def​ inspect(%Midi.Frame{​type:​ ​"​​MThd"​,
	​ 	 ​length:​ 6,
	​ 	 ​data:​ <<
	​ 	 format::integer-16,
	​ 	 tracks::integer-16,
	​ 	 division::bits-16
	​ 	 >>},
	​ 	 _opts) ​do​
	​ 	 beats = decode(division)
	​ 	 ​"​​#​​Midi.Header{Midi format: ​​#{​format​}​​, tracks: ​​#{​tracks​}​​, timing: ​​#{​beats​}​​}"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ inspect(%Midi.Frame{​type:​ ​"​​MTrk"​, ​length:​ length, ​data:​ data}, _opts) ​do​
	​ 	 ​"​​#​​Midi.Track{length: ​​#{​length​}​​, data: ​​#{​Kernel.inspect(data)​}​​"​
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ decode(<< 0::1, beats::15>>) ​do​
	​ 	 ​"​​♩ = ​​#{​beats​}​​"​
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ decode(<< 1::1, fps::7, beats::8>>) ​do​
	​ 	 ​"​​#{​-fps​}​​ fps, ​​#{​beats​}​​/frame"​
	​ 	 ​end​
	​ 	​end​

Run the code in IEx:
	​ 	​iex>​ midi = Midi.from_file ​"​​dueling-banjos.mid"​
	​ 	#Midi[
	​ 	#Midi.Header{Midi format: 1, tracks: 8, timing: ♩ = 120}
	​ 	#Midi.Track{length: 66, data: <<0, 255, 3, 14, 68, 117, 101, ​...>​>
	​ 	. . .
	​ 	#Midi.Track{length: 6291, data: <<0, 255, 33, 1, 0, 0, 185, ... >>
	​ 	#Midi.Track{length: 9, data: <<0, 255, 33, 1, 0, 0, 255, 47, 0>>
	​]

I added a little bit of decoding for the header frame, but just
treated the track frames as binary. You could extend this to do a full
decode of each track frame too.

There’s a wrinkle here. If you pass structs: false to IO.inspect (or
Kernel.inspect), it never calls our inspect function. Instead, it
formats it as a struct.
Better Formatting with Algebra Documents

The formatting of our MIDI stream leaves a little to be desired:
there’s no indentation or reasonable line wrapping.

To fix
this, we use a feature called algebra documents. An algebra
document is a tree structure that represents some
data you’d like to pretty-print.[40] Your job is to create the structure
based on the data you want to inspect, and Elixir will then find a
nice way to display it.

I’d like the inspect string to show the nesting of data, and to wrap
long lines honoring that nesting.

We do this by having our inspect function return an algebra
document rather than a string. In that document, we indicate places
where breaks are allowed (but not required) and we show how the nesting
works:
protocols/midi_algebra.exs
	​ 	​defimpl​ Inspect, ​for:​ Midi ​do​
	​ 	 ​import​ Inspect.Algebra
	​ 	
	​ 	 ​def​ inspect(%Midi{​content:​ <<>>}, _opts) ​do​
	​ 	 ​"​​#​​Midi[«empty»]"​
	​ 	 ​end​
	​ 	
	​ 	 ​def​ inspect(midi = %Midi{}, opts) ​do​
	​ 	 open = color(​"​​#​​Midi["​, ​:map​, opts)
	​ 	 close = color(​"​​]"​, ​:map​, opts)
	​ 	 separator = color(​"​​,"​, ​:map​, opts)
	​ 	
	​ 	 container_doc(
	​ 	 open,
	​ 	 Enum.to_list(midi),
	​ 	 close,
	​ 	 %Inspect.Opts{​limit:​ 4},
	​ 	 ​fn​ frame, _opts -> Inspect.Midi.Frame.inspect(frame, opts) ​end​,
	​ 	 ​separator:​ separator,
	​ 	 ​break:​ ​:strict​
	​)
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defimpl​ Inspect, ​for:​ Midi.Frame ​do​
	​ 	 ​import​ Inspect.Algebra
	​ 	
	​ 	 ​def​ inspect(
	​ 	 %Midi.Frame{​type:​ ​"​​MThd"​,
	​ 	 ​length:​ 6,
	​ 	 ​data:​ <<

	​ 	 format::integer-16,
	​ 	 tracks::integer-16,
	​ 	 division::bits-16
	​ 	 >>
	​ 	 },
	​ 	 opts)
	​ 	 ​do​
	​ 	 concat(
	​ 	 [
	​ 	 nest(
	​ 	 concat(
	​ 	 [
	​ 	 color(​"​​#​​Midi.Header{"​, ​:map​, opts),
	​ 	 break(​"​​"​),
	​ 	 ​"​​Midi format: ​​#{​format​}​​,"​,
	​ 	 break(​"​​ "​),
	​ 	 ​"​​tracks: ​​#{​tracks​}​​,"​,
	​ 	 break(​"​​ "​),
	​ 	 ​"​​timing: ​​#{​decode(division)​}​​"​,
	​]
	​),
	​ 	 2
	​),
	​ 	 break(​"​​"​),
	​ 	 color(​"​​}"​, ​:map​, opts)
	​]
	​)
	​ 	 ​end​
	​ 	
	​ 	
	​ 	 ​def​ inspect(%Midi.Frame{​type:​ ​"​​MTrk"​, ​length:​ length, ​data:​ data}, opts) ​do​
	​ 	 open = color(​"​​#​​Midi.Track{"​, ​:map​, opts)
	​ 	 close = color(​"​​}"​, ​:map​, opts)
	​ 	 separator = color(​"​​,"​, ​:map​, opts)
	​ 	 content = [
	​ 	 ​length:​ length,
	​ 	 ​data:​ data
	​]
	​ 	
	​ 	 container_doc(
	​ 	 open,
	​ 	 content,
	​ 	 close,
	​ 	 %Inspect.Opts{​limit:​ 15},
	​ 	 ​fn​ {key, value}, opts ->
	​ 	 key = color(​"​​#{​key​}​​:"​, ​:atom​, opts)
	​ 	 concat(key, concat(​"​​ "​, to_doc(value, opts)))
	​ 	 ​end​,
	​ 	 ​separator:​ separator,
	​ 	 ​break:​ ​:strict​
	​)
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ decode(<< 0::1, beats::15 >>) ​do​
	​ 	 ​"​​♩ = ​​#{​beats​}​​"​
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ decode(<< 1::1, fps::7, beats::8 >>) ​do​
	​ 	 ​"​​#{​-fps​}​​ fps, ​​#{​beats​}​​/frame"​
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ decode(x) ​do​
	​ 	 ​raise​ inspect x
	​ 	 ​end​
	​ 	​end​

On a narrow terminal window, we get this output:
	​ 	​iex>​ Midi.from_file ​"​​dueling-banjos.mid"​
	​ 	#Midi[
	​ 	 #Midi.Header{
	​ 	 Midi format: 1,
	​ 	 tracks: 8,
	​ 	 timing: ♩ = 120
	​ 	 },
	​ 	 #Midi.Track{
	​ 	 length: 66,
	​ 	 data: <<0, 255, 3, 14, 68, 117, 101, 108, 105,
	​ 	 110, 103, 32, 66, ​...>​>
	​ 	 },
	​ 	 #Midi.Track{
	​ 	 length: 1319,
	​ 	 data: <<0, 255, 33, 1, 0, 0, 192, 105, 0, 176, 7,
	​ 	 127, 0, ​...>​>
	​ 	 },
	​ 	 #Midi.Track{
	​ 	 length: 2082,
	​ 	 data: <<0, 255, 33, 1, 0, 0, 193, 25, 0, 177, 7,
	​ 	 127, 0, ​...>​>
	​ 	 },
	​ 	 ...
	​]

For more information, see the documentation for Inspect.Algebra.

Built-in Protocols: List.Chars and String.Chars

The List.Chars protocol is used by Kernel.to_charlist to convert
a value into a list of characters (think single-quoted string).

The String.Chars protocol is used to convert a value to a string
(binary, or double-quoted string). This is the protocol used for
string interpolation.

The protocols are implemented identically, except List.Chars
requires that you write a to_charlist function, and String.Chars
requires you write to_string.

Although we could implement a String.Chars.to_string for our Midi
struct, it probably wouldn’t make much sense. What would you
interpolate into the string?

Protocols Are Polymorphism

When you want to write a function that behaves
differently depending on the type of its arguments, you’re looking at
a polymorphic function. Elixir protocols give you a tidy and
controlled way to implement this. Whether you’re integrating your
types into the existing Elixir library or creating a new library with
a flexible interface, protocols let you package the behaviour in a
well-documented and disciplined way. And with that, we’re almost done. But when you write about a language,
there are always little details that don’t seem to fit anywhere. That’s
 why the next chapter is full of odds and ends.

Your Turn
	Exercise: Protocols-3

Collections that implement the Enumerable protocol define count,
member?, reduce, and slice functions. The Enum module uses these to
implement methods such as each, filter, and map.

Implement your own versions of each, filter, and map in terms
of reduce.

	Exercise: Protocols-4

In many cases, inspect will return a valid Elixir literal for the
value being inspected. Update the inspect function for structs so
that it returns valid Elixir code to construct a new struct equal to
the value being inspected.

Footnotes

	[38]
	
https://www.csie.ntu.edu.tw/~r92092/ref/midi/

	[39]
	
http://midiworld.com

	[40]
	
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.34.2200

Copyright © 2018, The Pragmatic Bookshelf.

 Chapter
 25
More Cool Stuff

Elixir is packed with features that make coding a joy. This chapter
contains a smattering of them.

Writing Your Own Sigils

You know by now that you can create strings and regular-expression
literals using sigils:
	​ 	string = ​~​s{now is the time}
	​ 	regex = ​~​r{..h..}

Have you ever wished you could extend these sigils to add your own specific
literal types? You can.

When you write a sigil such as ~s{...}, Elixir converts it into a
call to the function sigil_s. It passes the function two values. The
first is the string between the delimiters. The second is a list
containing any lowercase letters that immediately follow the closing
delimiter. (This second parameter is used to pick up any options you
pass to a regex literal, such as ~r/cat/if.)

Here’s the implementation of a sigil ~l that takes a multiline
string and returns a list containing each line as a separate
string. We know that ~l… is converted into a call to sigil_l, so
we just write a simple function in the LineSigil module.
odds/line_sigil.exs
	​ 	​defmodule​ LineSigil ​do​
	​ 	 @doc ​"​​"​​"​
	​ 	​ Implement the `~l` sigil, which takes a string containing​
	​ 	​ multiple lines and returns a list of those lines.​

	​ 	 ​## Example usage​
	​ 	
	​ 	 iex> ​import​ LineSigil
	​ 	 nil
	​ 	 iex> ​~​l\​"""​
	​ 	​ ...> one​
	​ 	​ ...> two​
	​ 	​ ...> three​
	​ 	​ ...> \"""​
	​ 	 [​"​​one"​,​"​​two"​,​"​​three"​]
	​ 	 ​"​​"​​"​
	​ 	​ def sigil_l(lines, _opts) do​
	​ 	​ lines |> String.trim_trailing |> String.split("​\n​"​​)​
	​ 	​ end​
	​ 	​end​

We can play with this in a separate module:
odds/line_sigil.exs
	​ 	​defmodule​ Example ​do​
	​ 	 ​import​ LineSigil
	​ 	
	​ 	 ​def​ lines ​do​
	​ 	 ​~​l​"""​
	​ 	​ line 1​
	​ 	​ line 2​
	​ 	​ and another line in #{__MODULE__}​
	​ 	​ """​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	IO.inspect Example.lines

This produces ["line 1","line 2","and another line in Elixir.Example"].

Because we import the sigil_l function inside the example module,
the ~l sigil is lexically scoped to this module. Note also that
Elixir performs interpolation before passing the string to our
method. That’s because we used a lowercase l. If our sigil were
~L{…} and the function were renamed sigil_L, no interpolation
would be performed.

The predefined sigil functions are sigil_C, sigil_c, sigil_R,
sigil_r, sigil_S, sigil_s, sigil_W, and sigil_w. If you want
to override one of these, you’ll need to explicitly import the
Kernel module and use an except clause to exclude it.

In this example, we used the heredoc syntax ("""). This passes our
function a multiline string with leading spaces removed. Sigil options
are not supported with heredocs, so we’ll switch to a regular literal
syntax to play with them.
Picking Up the Options

Let’s write a sigil that enables us to specify color constants. If we say
~c{red}, we’ll get 0xff0000, the RGB representation. We’ll also
support the option h to return an HSB value, so ~c{red}h will be
{0,100,100}.

Here’s the code:
odds/color.exs
	​ 	​defmodule​ ColorSigil ​do​
	​ 	
	​ 	 @color_map [
	​ 	 ​rgb:​ [​red:​ 0xff0000, ​green:​ 0x00ff00, ​blue:​ 0x0000ff, ​# ...​
	​],
	​ 	 ​hsb:​ [​red:​ {0,100,100}, ​green:​ {120,100,100}, ​blue:​ {240,100,100}
	​]
	​]
	​ 	
	​ 	
	​ 	 ​def​ sigil_c(color_name, []), ​do​: _c(color_name, ​:rgb​)
	​ 	 ​def​ sigil_c(color_name, ​'r'​), ​do​: _c(color_name, ​:rgb​)
	​ 	 ​def​ sigil_c(color_name, ​'h'​), ​do​: _c(color_name, ​:hsb​)
	​ 	
	​ 	 ​defp​ _c(color_name, color_space) ​do​
	​ 	 @color_map[color_space][String.to_atom(color_name)]
	​ 	 ​end​
	​ 	
	​ 	 ​defmacro​ __using__(_opts) ​do​
	​ 	 ​quote​ ​do​
	​ 	 ​import​ Kernel, ​except:​ [​sigil_c:​ 2]
	​ 	 ​import​ ​unquote​(__MODULE__), ​only:​ [​sigil_c:​ 2]
	​ 	 ​end​
	​ 	 ​end​
	​ 	​end​
	​ 	
	​ 	​defmodule​ Example ​do​
	​ 	 ​use​ ColorSigil
	​ 	
	​ 	 ​def​ rgb, ​do​: IO.inspect ​~​c{red}
	​ 	 ​def​ hsb, ​do​: IO.inspect ​~​c{red}h
	​ 	​end​
	​ 	
	​ 	Example.rgb ​#=> 16711680 (== 0xff0000)​
	​ 	Example.hsb ​#=> {0,100,100}​

The three clauses for the sigil_c function let us select the
colorspace to use based on the option passed. As the single-quoted
string ’r’ is actually represented by the list [?r], we can use
the string literal to pattern-match the options parameter.

Because I’m overriding a built-in sigil, I decided to implement a
__using__ macro that automatically removes the Kernel version and
adds our own (but only in the lexical scope that calls use on our
module).

The fact that we can write our own sigils is liberating. But misuse could lead to some pretty impenetrable code.

Your Turn
	Exercise: MoreCoolStuff-1

Write a sigil ~v that parses multiple lines of comma-separated
data, returning a list where each element is a row of data and
each row is a list of values. Don’t worry about quoting—just assume
each field is separated by a comma.

For example
	​ 	csv = ​~​v​"""​
	​ 	​1,2,3​
	​ 	​cat,dog​
	​ 	​"""​

would generate [["1","2","3"], ["cat","dog"]].

	Exercise: MoreCoolStuff-2

The function Float.parse converts leading characters of a string
to a float, returning either a tuple containing the value and the
rest of the string, or the atom :error.

Update your CSV sigil so that numbers are automatically converted:
	​ 	csv = ​~​v​"""​
	​ 	​1,2,3.14​
	​ 	​cat,dog​
	​ 	​"""​

should generate [[1.0,2.0,3.14], ["cat","dog"]].

	Exercise: MoreCoolStuff-3

(Hard) Sometimes the first line of a CSV file is a list of the
column names. Update your code to support this, and return the
values in each row as a keyword list, using the column names as the
keys. Here’s an example:
	​ 	csv = ​~​v​"""​
	​ 	​Item,Qty,Price​
	​ 	​Teddy bear,4,34.95​
	​ 	​Milk,1,2.99​
	​ 	​Battery,6,8.00​
	​ 	​"""​

would generate
	​ 	[
	​ 	 [​Item:​ ​"​​Teddy bear"​, ​Qty:​ 4, ​Price:​ 34.95],
	​ 	 [​Item:​ ​"​​Milk"​, ​Qty:​ 1, ​Price:​ 2.99],
	​ 	 [​Item:​ ​"​​Battery"​, ​Qty:​ 6, ​Price:​ 8.00]
	​]

Multi-app Umbrella Projects

It is unfortunate that Erlang chose to call self-contained bundles of
code apps. In many ways, they are closer to being shared
libraries. And as your projects grow, you may find yourself wanting to
split your code into multiple libraries, or apps. Fortunately, mix
makes this painless.

To illustrate the process, we’ll create a simple Elixir
evaluator. Given a set of input lines, it will return the result of
evaluating each. This will be one app.

To test it, we’ll need to pass in lists of lines. We’ve already
written a trivial ~l sigil that creates lists of lines for us, so
we’ll make that sigil code into a separate application.

Elixir calls these multi-app projects umbrella projects.
Create an Umbrella Project

We use mix new to create an umbrella project, passing it the
--umbrella option.
	​ 	​$ ​​mix​​ ​​new​​ ​​--umbrella​​ ​​eval​
	​ 	* creating README.md
	​ 	* creating mix.exs
	​ 	* creating apps

Compared to a normal mix project, the umbrella is pretty
lightweight—just a mix file and an apps directory.
Create the Subprojects

Subprojects are stored in the apps directory. There’s nothing
special about them—they are simply regular projects created using mix
new. Let’s create our two projects now:
	​ 	​$ ​​cd​​ ​​eval/apps​
	​ 	​$ ​​mix​​ ​​new​​ ​​line_sigil​
	​ 	* creating README.md
	​ 	​ ...​​ ​​and​​ ​​so​​ ​​on​
	​ 	​$ ​​mix​​ ​​new​​ ​​evaluator​
	​ 	* creating README.md
	​ 	​ ...​​ ​​and​​ ​​so​​ ​​on​
	​ 	* creating test/evaluator_test.exs

At this point we can try out our umbrella project. Go back to the
overall project directory and try mix compile.
	​ 	$ cd ..
	​ 	$ mix compile
	​ 	==> evaluator
	​ 	Compiled lib/evaluator.ex
	​ 	Generated evaluator app
	​ 	==> line_sigil
	​ 	Compiled lib/line_sigil.ex
	​ 	Generated line_sigil app

Now we have an umbrella project containing two regular
projects. Because there’s nothing special about the subprojects, you
can use all the regular mix commands in them. At the top level,
though, you can build all the subprojects as a unit.
Making the Subproject Decision

The fact that subprojects are just regular mix projects means you
don’t have to worry about whether to start a new project using an
umbrella. Simply start as a simple project. If you later
discover the need for an umbrella project, create it and move your
existing simple project into the apps directory.
The LineSigil Project

This project is trivial—just copy the LineSigil module from the
previous section into apps/line_sigil/lib/line_sigil.ex. Verify it
builds by running mix compile—in either the top-level directory or
the line_sigil directory.
The Evaluator Project

The evaluator takes a list of strings containing Elixir expressions and
evaluates them. It returns a list containing the expressions intermixed
with the value of each. For example, given
	​ 	a = 3
	​ 	b = 4
	​ 	a + b

our code will return
	​ 	code> a = 3
	​ 	value> 3
	​ 	code> b = 4
	​ 	value> 4
	​ 	code> a + b
	​ 	value> 7

We’ll use Code.eval_string to execute the Elixir expressions. To have the values of variables pass from one expression to the
next, we’ll also need to explicitly maintain the current binding.

Here’s the code:
odds/eval/apps/evaluator/lib/evaluator.ex
	​ 	​defmodule​ Evaluator ​do​
	​ 	
	​ 	 ​def​ eval(list_of_expressions) ​do​
	​ 	 { result, _final_binding } =
	​ 	 Enum.reduce(list_of_expressions,
	​ 	 {_result = [], _binding = binding()},
	​ 	 &evaluate_with_binding/2)
	​ 	 Enum.reverse result
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ evaluate_with_binding(expression, { result, binding }) ​do​
	​ 	 { next_result, new_binding } = Code.eval_string(expression, binding)
	​ 	 { [​"​​value> ​​#{​next_result​}​​"​, ​"​​code> ​​#{​expression​}​​"​ | result], new_binding }
	​ 	 ​end​
	​ 	​end​

Linking the Subprojects

Now we need to test our evaluator. It makes sense to use our ~l
sigil to create lists of expressions, so let’s write our tests that
way.
odds/eval/apps/evaluator/test/evaluator_test.exs
	​ 	​defmodule​ EvaluatorTest ​do​
	​ 	 ​use​ ExUnit.Case
	​ 	
	​ 	 ​import​ LineSigil
	​ 	
	​ 	 test ​"​​evaluates a basic expression"​ ​do​
	​ 	 input = ​~​l​"""​
	​ 	​ 1 + 2​
	​ 	​ """​
	​ 	
	​ 	 output = ​~​l​"""​
	​ 	​ code> 1 + 2​
	​ 	​ value> 3​
	​ 	​ """​
	​ 	
	​ 	 run_test input, output
	​ 	 ​end​
	​ 	
	​ 	 test ​"​​variables are propagated"​ ​do​
	​ 	 input = ​~​l​"""​
	​ 	​ a = 123​
	​ 	​ a + 1​
	​ 	​ """​
	​ 	 output = ​~​l​"""​
	​ 	​ code> a = 123​
	​ 	​ value> 123​
	​ 	​ code> a + 1​
	​ 	​ value> 124​
	​ 	​ """​
	​ 	
	​ 	 run_test input, output
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ run_test(lines, output) ​do​
	​ 	 assert output == Evaluator.eval(lines)
	​ 	 ​end​
	​ 	​end​

But if we simply run this in the apps/evaluator directort, Elixir won’t be able to find the
LineSigil module, as we don’t have a dependency. Instead, just run the
tests from the top-level directory (the one containing the overall
umbrella project). Mix will automatically load all the child apps for you.
	​ 	​$ ​​mix​​ ​​test​
	»	==> evaluator
	​ 	..
	​ 	
	​ 	Finished in 0.02 seconds
	​ 	2 tests, 0 failures
	​ 	
	​ 	Randomized with seed 334706
	»	==> line_sigil
	​ 	..
	​ 	
	​ 	Finished in 0.04 seconds
	​ 	1 doctest, 1 test, 0 failures
	​ 	
	​ 	Randomized with seed 334706

The first stanza of test output is for the evaluator tests, and the
second is for line_sigil.

But Wait! There’s More!

We’ve reached the end of our Elixir exploration.

This book was never intended to be exhaustive. Instead, it is intended to
hit the highlights, and to give you enough information to start coding
apps in Elixir yourself.

That means there’s a lot more to learn, both about the language
and about how to write great apps in it.

And I think that’s fun. Enjoy!

Copyright © 2018, The Pragmatic Bookshelf.

 Appendix
 1
Exceptions: raise and try, catch and throw

Elixir (like Erlang) takes the view that errors should normally be fatal
to the processes in which they occur. A typical Elixir application’s design involves many processes, which means the
effects of an error will be localized. A supervisor will detect the failing process, and the restart will be handled at that
level.

For that reason, you won’t find much exception-handling code in Elixir
programs. Exceptions are raised, but you rarely catch them.

Use exceptions for things that are exceptional—things that should never happen.

Exceptions do exist. This appendix is an overview of how to
generate them and how to catch them when they occur.

Raising an Exception

You can raise an exception using the raise function. At its
simplest, you pass it a string and it generates an exception of type
RuntimeError.
	​ 	​iex>​ ​raise​ ​"​​Giving up"​
	​ 	​**​ (RuntimeError) Giving up
	​ 	 erl_eval.erl:572: :erl_eval.do_apply/6

You can also pass the type of the exception, along with other optional
fields. All exceptions implement at least the message field.
	​ 	​iex>​ ​raise​ RuntimeError
	​ 	​**​ (RuntimeError) runtime error
	​ 	 erl_eval.erl:572: :erl_eval.do_apply/6
	​ 	​iex>​ ​raise​ RuntimeError, ​message:​ ​"​​override message"​
	​ 	​**​ (RuntimeError) override message
	​ 	 erl_eval.erl:572: :erl_eval.do_apply/6

You can intercept exceptions using the try function. It takes a
block of code to execute, and optional rescue, catch, and after
clauses.

The rescue and catch clauses look a bit like the body of a case
function—they take patterns and code to execute if the pattern
matches. The subject of the pattern is the exception that was raised.

Here’s an example of exception handling in action. We define a module
that has a public function, start. It calls a different helper function
depending on the value of its parameter. With 0, it runs
smoothly. With 1, 2, or 3, it causes the VM to raise an error, which
we catch and report.
exceptions/exception.ex
	​ 	​defmodule​ Boom ​do​
	​ 	 ​def​ start(n) ​do​
	​ 	 ​try​ ​do​
	​ 	 raise_error(n)
	​ 	 ​rescue​
	​ 	 [FunctionClauseError, RuntimeError] ->
	​ 	 IO.puts ​"​​no function match or runtime error"​
	​ 	 error ​in​ [ArithmeticError] ->
	​ 	 IO.inspect error
	​ 	 IO.puts ​"​​Uh-oh! Arithmetic error"​
	​ 	 reraise ​"​​too late, we're doomed"​, System.stacktrace
	​ 	 other_errors ->
	​ 	 IO.puts ​"​​Disaster! ​​#{​inspect other_errors​}​​"​
	​ 	 ​after​
	​ 	 IO.puts ​"​​DONE!"​
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ raise_error(0) ​do​
	​ 	 IO.puts ​"​​No error"​
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ raise_error(val = 1) ​do​
	​ 	 IO.puts ​"​​About to divide by zero"​
	​ 	 1 / (val-1)
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ raise_error(2) ​do​
	​ 	 IO.puts ​"​​About to call a function that doesn't exist"​
	​ 	 raise_error(99)
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ raise_error(3) ​do​
	​ 	 IO.puts ​"​​About to try creating a directory with no permission"​
	​ 	 File.mkdir!(​"​​/not_allowed"​)
	​ 	 ​end​
	​ 	​end​

We define three different exception patterns. The first matches one of
the two exceptions, FunctionClauseError or RuntimeError. The
second matches an ArithmeticError and stores the exception value in
the variable error. And the last clause catches any exception into
the variable other_error.

We also include an after clause. This will always run at the end of
the try function, regardless of whether an exception was raised.

Finally, look at the handling of ArithmeticError. As well as
reporting the error, we call reraise. This raises the current exception, but lets
us add a message. We also pass in the stack trace
(which is actually the stack trace at the point the original exception
was raised). Let’s see all this in IEx:
	​ 	​iex>​ c(​"​​exception.ex"​)
	​ 	[Boom]
	​ 	​iex>​ Boom.start 1
	​ 	About to divide by zero
	​ 	%ArithmeticError{}
	​ 	Uh-oh! Arithmetic error
	​ 	DONE!
	​ 	​**​ (RuntimeError) too late, we're doomed
	​ 	 exception.ex:26: Boom.raise_error/1
	​ 	 exception.ex:5: Boom.start/1
	​ 	
	​ 	​iex>​ Boom.start 2
	​ 	About to call a function that doesn't exist
	​ 	no function match or runtime error
	​ 	DONE!
	​ 	:ok
	​ 	
	​ 	​iex>​ Boom.start 3
	​ 	About to try creating a directory with no permission
	​ 	Disaster! %File.Error{action: "make directory", path: "/not_allowed",
	​ 	 reason: :eacces}
	​ 	DONE!
	​ 	:ok

catch, exit, and throw

Elixir code (and the underlying Erlang libraries) can raise a second kind of
error. These are generated when a process calls error, exit, or
throw. All three take a parameter, which is available to the catch handler.

Here’s an example:
exceptions/catch.ex
	​ 	​defmodule​ Catch ​do​
	​ 	
	​ 	 ​def​ start(n) ​do​
	​ 	 ​try​ ​do​
	​ 	 incite(n)
	​ 	 ​catch​
	​ 	 ​:exit​, code -> ​"​​Exited with code ​​#{​inspect code​}​​"​
	​ 	 ​:throw​, value -> ​"​​throw called with ​​#{​inspect value​}​​"​
	​ 	 what, value -> ​"​​Caught ​​#{​inspect what​}​​ with ​​#{​inspect value​}​​"​
	​ 	 ​end​
	​ 	 ​end​
	​ 	
	​ 	
	​ 	 ​defp​ incite(1) ​do​
	​ 	 ​exit​(​:something_bad_happened​)
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ incite(2) ​do​
	​ 	 ​throw​ {​:animal​, ​"​​wombat"​}
	​ 	 ​end​
	​ 	
	​ 	 ​defp​ incite(3) ​do​
	​ 	 ​:erlang​.error ​"​​Oh no!"​
	​ 	 ​end​
	​ 	​end​

Calling the start function with 1, 2, or 3 will cause an exit, a
throw, or an error to be thrown. Just to illustrate wildcard pattern
matching, we handle the last case by matching any type into the
variable what.
	​ 	​iex>​ c(​"​​catch.ex"​)
	​ 	[Catch]
	​ 	​iex>​ Catch.start 1
	​ 	"Exited with code :something_bad_happened"
	​ 	​iex>​ Catch.start 2
	​ 	"throw called with {:animal,\"wombat\"}"
	​ 	​iex>​ Catch.start 3
	​ 	"Caught :error with \"Oh no!\""

Defining Your Own Exceptions

Exceptions in Elixir are basically records. You can define your own
exceptions by creating a module. Inside it, use defexception to
define the various fields in the exception, along with their default
values. Because you’re creating a module, you can also add
functions—often these are used to format the exception’s fields into
meaningful messages.

Say we’re writing a library to talk to a Microsoft Kinect controller. It might
want to raise an exception on various kinds of communication
errors. Some of these are permanent, but others are likely to be
transient and can be retried. We’ll define our exception with its
(required) message field and an additional can_retry
field. We’ll also add a function that formats these two
fields into a nice message.
exceptions/defexception.ex
	​ 	​defmodule​ KinectProtocolError ​do​
	​ 	
	​ 	 ​defexception​ ​message:​ ​"​​Kinect protocol error"​,
	​ 	 ​can_retry:​ false
	​ 	
	​ 	 ​def​ full_message(me) ​do​
	​ 	 ​"​​Kinect failed: ​​#{​me.message​}​​, retriable: ​​#{​me.can_retry​}​​"​
	​ 	 ​end​
	​ 	
	​ 	​end​

Users of our library could write code like this:
exceptions/defexception.ex
	​ 	​try​ ​do​
	​ 	 talk_to_kinect()
	​ 	​rescue​
	​ 	 error ​in​ [KinectProtocolError] ->
	​ 	 IO.puts KinectProtocolError.full_message(error)
	​ 	 ​if​ error.can_retry, ​do​: schedule_retry()
	​ 	​end​

If an exception gets raised, the code handles it and possibly retries:
	​ 	Kinect failed: usb unplugged, retriable: true
	​ 	Retrying in 10 seconds

Now Ignore This Appendix

The Elixir source code for the mix utility contains no exception
handlers. The Elixir compiler itself contains a total of five (but it
is doing some pretty funky things).

If you find yourself defining new exceptions, ask if you should be
isolating the code in a separate process instead. After all, if it can
go wrong, wouldn’t you want to isolate it?

Copyright © 2018, The Pragmatic Bookshelf.

 Appendix
 2
Type Specifications and Type Checking

When we looked at @callback,, we saw that we
defined callbacks in terms of their parameter types and return
values. For example, we might write
	​ 	@callback parse(uri_info :: URI.Info.t) :: URI.Info.t
	​ 	@callback default_port() :: integer

The terms URI.Info.t and integer are examples of type
specifications. And, as José Valim pointed out to me, the cool
thing is that they are implemented (by Yurii Rashkovskii) directly in
the Elixir language itself—no special parsing is involved. This
is a great illustration of the power of Elixir metaprogramming.

In this appendix we’ll discuss how to specify types in
Elixir. But before we do, there’s another question to address: Why bother?

When Specifications Are Used

Elixir type specifications come from Erlang. It is very common to see
Erlang code where every exported (public) function is preceded by a
-spec line. This is metadata that gives type information. The
following code comes from the Elixir parser (which is [currently]
written in Erlang). It says the return_error function takes two
parameters, an integer and any type, and never returns.
	​ 	-spec return_error(integer(), any()) -> no_return().
	​ 	return_error(Line, Message) ->
	​ 	 throw({error, {Line, ?MODULE, Message}}).

One of the reasons the Erlang folks do this is to document their
code. You can read it inline while reading the source, and you can
also read it in the pages created by their documentation tool.

The other reason is that they have tools such as dialyzer that
perform static analysis of Erlang code and report on some kinds
of type mismatches.[41]

These same benefits can apply to Elixir code. We have the @spec
module attribute for documenting a function’s type specification; in IEx we have the s helper for displaying specifications and
the t helper for showing user-defined types. You can also run Erlang
tools such as dialyzer on compiled Elixir .beam files.

However, type specifications are not currently in wide use in the
Elixir world. Whether you use them is a matter of personal
taste.

Specifying a Type

A type is simply a subset of all possible values in a language. For
example, the type integer means all the possible integer values, but
excludes lists, binaries, PIDs, and so on.

The basic types in Elixir are as follows:
any,
atom,
float,
fun,
integer,
list,
map,
maybe_improper_list,
none,
pid,
port,
reference,
struct, and
tuple.

The type any (and its alias, _) is the set of all values, and
none is the empty set.

A literal atom or integer is the set containing just that value.

The value nil can be represented as nil.
Collection Types

A list is represented as [type], where type is any of
the basic or combined types. This notation does not signify a list of
one element—it simply says that elements of the list will be of the
given type. If you want to specify a nonempty list, use
[type, ...]. As a convenience, the type list is an
alias for [any].

Binaries are represented using this syntax:
	<< >>
	
An empty binary (size 0).

	<< _ :: size >>
	
A sequence of size bits. This is called a bitstring.

	<< _ :: size * unit_size >>
	
A sequence of size units, where each unit is unit_size bits long.

In the last two instances, size can be specified as _, in which case
the binary has an arbitrary number of bits/units.

The predefined type bitstring is equivalent to <<_::_>>, an arbitrarily
sized sequence of bits. Similarly, binary is defined as
<<_::_*8>>, an arbitrary sequence of 8-bit bytes.

Tuples are represented as { type, type,… } or using the type
tuple, so both {atom,integer} and
tuple(atom,integer} represent a tuple whose first element is an
atom and whose second element is an integer.
Combining Types

The range operator (..) can be used with literal integers to create a
type representing that range. The three built-in types,
non_neg_integer, pos_integer, and neg_integer, represent integers
that are greater than or equal to, greater than, or less than zero, respectively.

The union operator (|) indicates that the acceptable values are the
unions of its arguments.

Parentheses may be used to group terms in a type specification.
Structures

As structures are basically maps, you could just use the map
type for them, but doing so throws away a lot of useful
information. Instead, I recommend that you define a specific type for
each struct:
	​ 	​defmodule​ LineItem ​do​
	​ 	 defstruct ​sku:​ ​"​​"​, ​quantity:​ 1
	​ 	 @type t :: %LineItem{​sku:​ String.t, ​quantity:​ integer}
	​ 	​end​

You can then reference this type as LineItem.t.
Anonymous Functions

Anonymous functions are specified using (head
-> return_type).

The head specifies the arity and possibly the types of the function
parameters. Use “. . .” to mean an arbitrary number of
arbitrarily typed arguments, or a list of types, in which case
the number of types is the function’s arity.
	​ 	(... -> integer) ​# Arbitrary parameters; returns an integer​
	​ 	(list(integer) -> integer) ​# Takes a list of integers and returns an integer​
	​ 	(() -> String.t) ​# Takes no parameters and returns an Elixir string​
	​ 	(integer, atom -> list(atom)) ​# Takes an integer and an atom and returns​
	​ 	 ​# a list of atoms​

You can put parentheses around the head if you find it clearer:
	​ 	(atom, float -> list)
	​ 	((atom, float) -> list)
	​ 	(list(integer) -> integer)
	​ 	((list(integer)) -> integer)

Handling Truthy Values

The type as_boolean(T) says that the actual value matched will be
of type T, but the function that uses the value will treat it as a
truthy value (anything other than nil or false is considered
true). Thus the specification for the Elixir function Enum.count is
	​ 	@spec count(t, (element -> as_boolean(term))) :: non_neg_integer

Some Examples
	integer | float
	
Any number (Elixir has an alias for this).

	[{atom, any}]
	list(atom, any)
	
A list of key/value pairs. The two forms are the same.

	non_neg_integer | {:error, String.t}
	
An integer greater than or equal to zero, or a tuple
containing the atom :error and a string.

	(integer, atom -> { :pair, atom, integer })
	
An anonymous function that takes an integer and an atom and returns
a tuple containing the atom :pair, an atom, and an integer.

	<< _ :: _ * 4 >>
	
A sequence of 4-bit nibbles.

Defining New Types

The attribute @type can be used to define new types.
	​ 	@type type_name :: type_specification

Elixir uses this to predefine some built-in types and aliases. Here
are just some of them.

	​ 	@type term :: any
	​ 	@type binary :: <<_::_*8>>
	​ 	@type bitstring :: <<_::_*1>>
	​ 	@type boolean :: false | true
	​ 	@type byte :: 0..255
	​ 	@type char :: 0..0x10ffff
	​ 	@type charlist :: [char]
	​ 	@type list :: [any]
	​ 	@type list(t) :: [t]
	​ 	@type number :: integer | float
	​ 	@type module :: atom
	​ 	@type mfa :: {module, atom, byte}
	​ 	@type node :: atom
	​ 	@type nonempty_charlist :: [char]
	​ 	@type timeout :: ​:infinity​ | non_neg_integer
	​ 	@type no_return :: none

As the list(t) entry shows, you can parameterize the types in a new
definition. Simply use one or more identifiers as parameters on the
left side, and use these identifiers where you’d otherwise use
type names on the right. Then when you use the newly defined type,
pass in actual types for each of these parameters:
	​ 	@type variant(type_name, type) :: { ​:variant​, type_name, type)
	​ 	
	​ 	@spec create_string_tuple(​:string​, String.t) :: variant(​:string​, String.t)

As well as @type, Elixir has the @typep and @opaque module
attributes. They have the same syntax as @type, and do basically the
same thing. The difference is in the visibility of the result.

@typep defines a type that is local to the module that contains
it—the type is private. @opaque defines a type whose name may be
known outside the module but whose definition is not.

Specs for Functions and Callbacks

The @spec specifies a function’s parameter count, types, and return-value
type. It can appear anywhere in a module that defines
the function, but by convention it sits immediately before the function
definition, following any function documentation.

We’ve already seen the syntax:

@spec function_name(param1_type,
…) :: return_type

Let’s see some examples. These come from the built-in Dict module.
	​1: 	@type key :: any
	​2: 	@type value :: any
	​3: 	@type keys :: [key]
	​4: 	@type t :: tuple | list ​# `t` is the type of the collection​
	​5: 	
	​6: 	@spec values(t) :: [value]
	​7: 	@spec size(t) :: non_neg_integer
	​8: 	@spec has_key?(t, key) :: boolean
	​9: 	@spec update(t, key, value, (value -> value)) :: t

	Line 6
	
values takes a collection (tuple or list) and returns a list of
values (any).

	Line 7
	
size takes a collection and returns an integer (>= 0).

	Line 8
	
has_key? takes a collection and a key, and returns true or false.

	Line 9
	
update takes a collection, a key, a value, and a function that
maps a value to a value. It returns a (new) collection.

For functions with multiple heads (or those that have default values),
you can specify multiple @spec attributes. Here’s an example from
the Enum module:
	​ 	@spec at(t, index) :: element | nil
	​ 	@spec at(t, index, default) :: element | default
	​ 	
	​ 	​def​ at(collection, n, default \\ nil) ​when​ n >= 0 ​do​
	​ 	 ...
	​ 	​end​

The Enum module also has many examples of the use of as_boolean:
	​ 	@spec filter(t, (element -> as_boolean(term))) :: list
	​ 	​def​ filter(collection, fun) ​when​ is_list(collection) ​do​
	​ 	 ...
	​ 	​end​

This says filter takes something enumerable and a
function. That function maps an element to a term (which is an alias
for any), and the filter function treats that value as being
truthy. filter returns a list.

For more information on Elixir support for type specifications, see
the guide.[42]

Using Dialyzer

Dialyzer analyzes code that runs on the Erlang VM, looking for
potential errors. To use it with Elixir, we have to compile our source
into .beam files and make sure that the debug_info
compiler option is set (which it is when running mix in the default,
development mode). Let’s see how to do that by creating a trivial
project with two source files.
	​ 	​$ ​​mix​​ ​​new​​ ​​simple​
	​ 	​...​
	​ 	​$ ​​cd​​ ​​simple​

Inside the project, let’s create a simple function. Being lazy, I
haven’t implemented the body yet.
	​ 	​defmodule​ Simple ​do​
	​ 	 @type atom_list :: list(atom)
	​ 	 @spec count_atoms(atom_list) :: non_neg_integer
	​ 	 ​def​ count_atoms(list) ​do​
	​ 	 ​# ...​
	​ 	 ​end​
	​ 	​end​

Let’s run dialyzer on our code. To make life simple, we’ll use the dialyxir library to add a dialyzer task to mix:
typespecs/simple/mix.exs
	​ 	​defp​ deps ​do​
	​ 	 [
	​ 	 { ​:dialyxir​, ​"​​~> 0.5"​, ​only:​ [​:dev​], ​runtime:​ false }
	​]
	​ 	​end​

Fetch the library and build our project:
	​ 	​$ ​​mix​​ ​​deps.get​
	​ 	​$ ​​mix​​ ​​compile​

Now we’re ready to analyze our code. However, the first time we do
this, dialyzer needs to construct a massive data structure
containing all the types and APIs in both Erlang and Elixir. This lets
it check not just our code, but also that our code is interacting
correctly with the rest of the world. Building this data structure is
slow: expect it to take 10 to 20 minutes! But once done, it won’t be repeated.
	​ 	mix dialyzer
	​ 	Compiling 2 files (.ex)
	​ 	warning: variable "list" is unused
	​ 	 lib/simple.ex:8
	​ 	
	​ 	Generated simple app
	​ 	Checking PLT...
	​ 	[:compiler, :elixir, :kernel, :stdlib]
	​ 	Finding suitable PLTs
	​ 	Looking up modules in dialyxir_erlang-20.2.2_elixir-1.6.0-rc.0_deps-dev.plt
	​ 	. . .
	​ 	Checking 391 modules in dialyxir_erlang-20.2.2_elixir-1.6.0-rc.0_deps-dev.p
	​ 	lt
	​ 	Adding 48 modules to dialyxir_erlang-20.2.2_elixir-1.6.0-rc.0_deps-dev.plt
	​ 	
	​ 	Starting Dialyzer
	​ 	dialyzer args: [
	​ 	 check_plt: false,
	​ 	 init_plt: '/Users/dave/Work/Bookshelf/titles/elixir16/Book/code/typespecs
	​ 	/simple/_build/dev/dialyxir_erlang-20.2.2_elixir-1.6.0-rc.0_deps-dev.plt',
	​ 	 files_rec: ['/Users/dave/Work/Bookshelf/titles/elixir16/Book/code/typespe
	​ 	cs/simple/_build/dev/lib/simple/ebin'],
	​ 	 warnings: [:unknown]
	​]
	​ 	done in 0m1.18s
	​ 	lib/simple.ex:7: Invalid type specification for function
	​ 	 'Elixir.Simple':count_atoms/1. The success typing is (_) -> 'nil'
	​ 	done (warnings were emitted)

Ouch! Let’s run it again:
	​ 	mix dialyzer --no-check
	​ 	Starting Dialyzer
	​ 	dialyzer args: [
	​ 	. . .
	​]
	​ 	done in 0m1.4s
	​ 	
	​ 	lib/simple.ex:7: Invalid type specification for function
	​ 	 'Elixir.Simple':count_atoms/1. The success typing is (_) -> 'nil'
	​ 	done (warnings were emitted)

Those last three lines are the important ones. They’re complaining that the typespec for count_atoms doesn’t agree
with the implementation. The success typing (think of this as the
actual type)[43] returns nil, but the spec says it is a
nonnegative integer. Dialyzer has caught our stubbed-out body.

Let’s fix that:
typespecs/simple/lib/simple.ex
	​ 	​defmodule​ Simple ​do​
	​ 	 @type atom_list :: list(atom)
	​ 	 @spec count_atoms(atom_list) :: non_neg_integer
	​ 	 ​def​ count_atoms(list) ​do​
	​ 	 length list
	​ 	 ​end​
	​ 	​end​

and run dialyzer again:
	​ 	​$ ​​mix​​ ​​dialyzer​
	​ 	Compiling 1 file (.ex)
	​ 	Checking PLT...
	​ 	
	​ 	done in 0m1.34s
	​ 	done (passed successfully)

Let’s add a second module that calls our count_atoms function:
typespecs/simple/lib/simple/client.ex
	​ 	​defmodule​ Client ​do​
	​ 	 @spec other_function() :: non_neg_integer
	​ 	 ​def​ other_function ​do​
	​ 	 Simple.count_atoms [1, 2, 3]
	​ 	 ​end​
	​ 	​end​

Compile and dialyze:
	​ 	19∙18∙53≻ mix dialyzer
	​ 	Compiling 1 file (.ex)
	​ 	Generated simple app
	​ 	Checking PLT...
	​ 	done in 0m1.37s
	​ 	
	​ 	lib/simple/client.ex:3: Function other_function/0 has no local return
	​ 	lib/simple/client.ex:4: The call 'Elixir.Simple':count_atoms([1 | 2
	​ 	 | 3,...]) breaks the contract (atom_list()) -> non_neg_integer()
	​ 	done (warnings were emitted)

That’s pretty cool. Dialyzer noticed that we called count_atoms with
a list of integers, but it is specified to receive a list of atoms. It
also decided this would raise an error, so the function would
never return (that’s the no local return warning). Let’s fix that:
	​ 	​defmodule​ Client ​do​
	​ 	 @spec other_function() :: non_neg_integer
	​ 	 ​def​ other_function ​do​
	​ 	 Simple.count_atoms [​:a​, ​:b​, ​:c​]
	​ 	 ​end​
	​ 	​end​

	​ 	​$ ​​mix​​ ​​dialyzer​
	​ 	Compiling 1 file (.ex)
	​ 	
	​ 	done in 0m1.03s
	​ 	done (passed successfully)

And so it goes.…
Dialyzer and Type Inference

In this appendix, we’ve shown dialyzer working with type specs that we
added to our functions. But it also does a credible job with
unannotated code. This is because dialyzer knows the types of the
built-in functions (remember the long wait the first time we
ran it) and
can infer (some of) your function types from this. Here’s a
simple example:
	​ 	​defmodule​ NoSpecs ​do​
	​ 	 ​def​ length_plus_n(list, n) ​do​
	​ 	 length(list) + n
	​ 	 ​end​
	​ 	 ​def​ call_it ​do​
	​ 	 length_plus_n(2, 1)
	​ 	 ​end​
	​ 	​end​

Compile this, and run dialyzer:
	​ 	​$ ​​mix​​ ​​dialyzer​
	​ 	​...​
	​ 	done in 0m1.28s
	​ 	
	​ 	lib/nospecs.ex:5: Function call_it/0 has no local return
	​ 	lib/nospecs.ex:6: The call 'Elixir.NoSpecs':length_plus_n(1,2) will
	​ 	 never return since it differs in the 1st argument from the success
	​ 	 typing arguments: ([any()],number())
	​ 	done (warnings were emitted)

Here it noticed that the length_plus_n function called length on
its first parameter, and length requires a list as an argument. This
means length_plus_n also needs a list argument, and so it complains.

What happens if we change the call to length_plus_n([:a, :b], :c)?
	​ 	​defmodule​ NoSpecs ​do​
	​ 	 ​def​ length_plus_n(list, n) ​do​
	​ 	 length(list) + n
	​ 	 ​end​
	​ 	 ​def​ call_it ​do​
	​ 	 length_plus_n([1, 2], ​:c​)
	​ 	 ​end​
	​ 	​end​

	​ 	​$ ​​mix​​ ​​dialyzer​
	​ 	done in 0m1.29s
	​ 	
	​ 	lib/nospecs.ex:5: Function call_it/0 has no local return
	​ 	lib/nospecs.ex:6: The call 'Elixir.NoSpecs':length_plus_n([1, 2],'c')
	​ 	 will never return since it differs in the 2nd argument from the
	​ 	 success typing arguments: ([any()],number())
	​ 	done (warnings were emitted)

This is even cooler. It knows that + (which is implemented as a
function) takes two numeric arguments. When we pass an atom as the
second parameter, dialyzer recognizes that this makes no sense, and
complains. But look at the error. It isn’t complaining about the
addition. Instead, it has assigned a default typespec to our function,
based on its analysis of what we call inside that function.

This is success typing. Dialyzer attempts to
infer the most permissive types that are compatible with the code—it
assumes the code is correct until it finds a contradiction. This makes
it a powerful tool, as it can make assumptions as it runs.

Does that mean you don’t need @spec attributes? That’s your call. Try
it with and without. Often, adding a @spec will further constrain a function’s
type signature. We saw this with our count_of_atoms
function, where the spec made it explicit that we expected a list of
atoms as an argument.

Ultimately, dialyzer is a tool, not a test of your coding chops. Use
it as such, but don’t waste time adding specs to get a gold star.

Footnotes

	[41]
	
http://www.erlang.org/doc/man/dialyzer.html

	[42]
	
http://elixir-lang.org/getting-started/typespecs-and-behaviours.html#types-and-specs

	[43]
	
http://www.it.uu.se/research/group/hipe/papers/succ_types.pdf

Copyright © 2018, The Pragmatic Bookshelf.

Bibliography

	[Arm13]
	Joe Armstrong. Programming Erlang (2nd edition). The Pragmatic Bookshelf, Raleigh, NC, 2nd, 2013.

Copyright © 2018, The Pragmatic Bookshelf.

Thank you!

 How did you enjoy this book? Please let us know. Take a moment and email us at support@pragprog.com with your feedback. Tell us your story and you could win free ebooks. Please use the subject line “Book Feedback.”

 Ready for your next great Pragmatic Bookshelf book? Come on over to https://pragprog.com and use the coupon code BUYANOTHER2018 to save 30% on your next ebook.

 Void where prohibited, restricted, or otherwise unwelcome. Do not use ebooks near water. If rash persists, see a doctor. Doesn’t apply to The Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf itself. Side effects may include increased knowledge and skill, increased marketability, and deep satisfaction. Increase dosage regularly.

 And thank you for your continued support,

 Andy Hunt, Publisher

You May Be Interested In…
Select a cover for more information
Programming Phoenix ≥ 1.4

 Don’t accept the compromise between fast and beautiful: you can have it all. Phoenix creator Chris McCord, Elixir creator José Valim, and award-winning author Bruce Tate walk you through building an application that’s fast and reliable. At every step, you’ll learn from the Phoenix creators not just what to do, but why. Packed with insider insights and completely updated for Phoenix 1.4, this definitive guide will be your constant companion in your journey from Phoenix novice to expert, as you build the next generation of web applications.

Chris McCord, Bruce Tate and José Valim
(325 pages) ISBN: 9781680502268 $45.95

Programming Elm

 Elm brings the safety and stability of functional programing to front-end development, making it one of the most popular new languages. Elm’s functional nature and static typing means that run-time errors are nearly impossible, and it compiles to JavaScript for easy web deployment. This book helps you take advantage of this new language in your web site development. Learn how the Elm Architecture will help you create fast applications. Discover how to integrate Elm with JavaScript so you can update legacy applications. See how Elm tooling makes deployment quicker and easier.

Jeremy Fairbank
(250 pages) ISBN: 9781680502855 $40.95

Functional Web Development with Elixir, OTP, and Phoenix

 Elixir and Phoenix are generating tremendous excitement as an unbeatable platform for building modern web applications. For decades OTP has helped developers create incredibly robust, scalable applications with unparalleled uptime. Make the most of them as you build a stateful web app with Elixir, OTP, and Phoenix. Model domain entities without an ORM or a database. Manage server state and keep your code clean with OTP Behaviours. Layer on a Phoenix web interface without coupling it to the business logic. Open doors to powerful new techniques that will get you thinking about web development in fundamentally new ways.

Lance Halvorsen
(218 pages) ISBN: 9781680502435 $45.95

Craft GraphQL APIs in Elixir with Absinthe

 Your domain is rich and interconnected, and your API should be too. Upgrade your web API to GraphQL, leveraging its flexible queries to empower your users, and its declarative structure to simplify your code. Absinthe is the GraphQL toolkit for Elixir, a functional programming language designed to enable massive concurrency atop robust application architectures. Written by the creators of Absinthe, this book will help you take full advantage of these two groundbreaking technologies. Build your own flexible, high-performance APIs using step-by-step guidance and expert advice you won’t find anywhere else.

Bruce Williams and Ben Wilson
(302 pages) ISBN: 9781680502558 $47.95

Software Design X-Rays

 Are you working on a codebase where cost overruns, death marches, and heroic fights with legacy code monsters are the norm? Battle these adversaries with novel ways to identify and prioritize technical debt, based on behavioral data from how developers work with code. And that’s just for starters. Because good code involves social design, as well as technical design, you can find surprising dependencies between people and code to resolve coordination bottlenecks among teams. Best of all, the techniques build on behavioral data that you already have: your version-control system. Join the fight for better code!

Adam Tornhill
(274 pages) ISBN: 9781680502725 $45.95

Release It! Second Edition

 A single dramatic software failure can cost a company millions of dollars—but can be avoided with simple changes to design and architecture. This new edition of the best-selling industry standard shows you how to create systems that run longer, with fewer failures, and recover better when bad things happen. New coverage includes DevOps, microservices, and cloud-native architecture. Stability antipatterns have grown to include systemic problems in large-scale systems. This is a must-have pragmatic guide to engineering for production systems.

Michael Nygard
(376 pages) ISBN: 9781680502398 $47.95

Design It!

 Don’t engineer by coincidence—design it like you mean it! Grounded by fundamentals and filled with practical design methods, this is the perfect introduction to software architecture for programmers who are ready to grow their design skills. Ask the right stakeholders the right questions, explore design options, share your design decisions, and facilitate collaborative workshops that are fast, effective, and fun. Become a better programmer, leader, and designer. Use your new skills to lead your team in implementing software with the right capabilities—and develop awesome software!

Michael Keeling
(358 pages) ISBN: 9781680502091 $41.95

The Nature of Software Development

 You need to get value from your software project. You need it “free, now, and perfect.” We can’t get you there, but we can help you get to “cheaper, sooner, and better.” This book leads you from the desire for value down to the specific activities that help good Agile projects deliver better software sooner, and at a lower cost. Using simple sketches and a few words, the author invites you to follow his path of learning and understanding from a half century of software development and from his engagement with Agile methods from their very beginning.

Ron Jeffries
(176 pages) ISBN: 9781941222379 $24

Mazes for Programmers

 A book on mazes? Seriously?

 Yes!

 Not because you spend your day creating mazes, or because you particularly like solving mazes.

 But because it’s fun. Remember when programming used to be fun? This book takes you back to those days when you were starting to program, and you wanted to make your code do things, draw things, and solve puzzles. It’s fun because it lets you explore and grow your code, and reminds you how it feels to just think.

 Sometimes it feels like you live your life in a maze of twisty little passages, all alike. Now you can code your way out.

Jamis Buck
(286 pages) ISBN: 9781680500554 $38

Good Math

 Mathematics is beautiful—and it can be fun and exciting as well as practical. Good Math is your guide to some of the most intriguing topics from two thousand years of mathematics: from Egyptian fractions to Turing machines; from the real meaning of numbers to proof trees, group symmetry, and mechanical computation. If you’ve ever wondered what lay beyond the proofs you struggled to complete in high school geometry, or what limits the capabilities of the computer on your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338 $34

images/cover.jpg
natic
Tammers

Programmin
E]%GI‘ >16)

Functional

[> Concurrent
[> Pragmatic
[>Fun

Dave Thomas

Foreword by
José valim, = =
Creator of Elixir . X - _—

UBUNTU FONT LICENCE Version 1.0

PREAMBLE
This licence allows the licensed fonts to be used, studied, modified and
redistributed freely. The fonts, including any derivative works, can be
bundled, embedded, and redistributed provided the terms of this licence
are met. The fonts and derivatives, however, cannot be released under
any other licence. The requirement for fonts to remain under this
licence does not require any document created using the fonts or their
derivatives to be published under this licence, as long as the primary
purpose of the document is not to be a vehicle for the distribution of
the fonts.

DEFINITIONS
"Font Software" refers to the set of files released by the Copyright
Holder(s) under this licence and clearly marked as such. This may
include source files, build scripts and documentation.

"Original Version" refers to the collection of Font Software components
as received under this licence.

"Modified Version" refers to any derivative made by adding to, deleting,
or substituting -- in part or in whole -- any of the components of the
Original Version, by changing formats or by porting the Font Software to
a new environment.

"Copyright Holder(s)" refers to all individuals and companies who have a
copyright ownership of the Font Software.

"Substantially Changed" refers to Modified Versions which can be easily
identified as dissimilar to the Font Software by users of the Font
Software comparing the Original Version with the Modified Version.

To "Propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification and with or without charging
a redistribution fee), making available to the public, and in some
countries other activities as well.

PERMISSION & CONDITIONS
This licence does not grant any rights under trademark law and all such
rights are reserved.

Permission is hereby granted, free of charge, to any person obtaining a
copy of the Font Software, to propagate the Font Software, subject to
the below conditions:

1) Each copy of the Font Software must contain the above copyright
notice and this licence. These can be included either as stand-alone
text files, human-readable headers or in the appropriate machine-
readable metadata fields within text or binary files as long as those
fields can be easily viewed by the user.

2) The font name complies with the following:
(a) The Original Version must retain its name, unmodified.
(b) Modified Versions which are Substantially Changed must be renamed to
avoid use of the name of the Original Version or similar names entirely.
(c) Modified Versions which are not Substantially Changed must be
renamed to both (i) retain the name of the Original Version and (ii) add
additional naming elements to distinguish the Modified Version from the
Original Version. The name of such Modified Versions must be the name of
the Original Version, with "derivative X" where X represents the name of
the new work, appended to that name.

3) The name(s) of the Copyright Holder(s) and any contributor to the
Font Software shall not be used to promote, endorse or advertise any
Modified Version, except (i) as required by this licence, (ii) to
acknowledge the contribution(s) of the Copyright Holder(s) or (iii) with
their explicit written permission.

4) The Font Software, modified or unmodified, in part or in whole, must
be distributed entirely under this licence, and must not be distributed
under any other licence. The requirement for fonts to remain under this
licence does not affect any document created using the Font Software,
except any version of the Font Software extracted from a document
created using the Font Software may only be distributed under this
licence.

TERMINATION
This licence becomes null and void if any of the above conditions are
not met.

DISCLAIMER
THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF
COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE
COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER
DEALINGS IN THE FONT SOFTWARE.

images/_covers/phoenix14.jpg

images/_covers/mcmath.jpg
Good Math

images/apple-logo-black.jpg

images/_covers/mkdsa.jpg
Design It!

images/Coupon.png
SAVE 30%!
é itlﬁelf Use coupon code
BUYANOTHER2018

images/aside-icons/warning.png

images/aside-icons/info.png

images/duper_perf.png
Eapoad time ()

images/wheres-the-code.png

images/fib_server.png
Fibonacci Scheduler
Server
\\(’ﬂﬂﬂr
8 seheier pid) H
{:answex n. Abin pid | 3
> = i
Lahotdoun

images/duper_super.png

images/aside-icons/tip.png
(<l

images/supervision_simple.png
=D G

images/duper_sequence.png
: ath {path, hash)
'4_'_—;———‘_‘

I
1

results

1

images/eden_fowler_actors.png
Comte Anthony Eden W Follow
@aeden

All your objects want to grow up to be
actors.
4~Reply 13 Retweet W Favorite eee More

1:16 AM - 16 Jun 13 from Limoux, Aude

Chad Fowler achadfowler 21h
‘@aeden sadly, most just end up waiting tables
Details 4 Reply 3 Retweet % Favorite s+ More

images/spawn_perf.png
time (mS)

10000

1,000

H

10

100 10000
Number of processes

1000000

images/observer_3.png
nonode@nohost

System Load Charts | Memory Allocators _Applications _Processes _Table Viewer Trace Overview

Carrier size (B)
50

Carrier Utiization (%)

I

K'n ED o ER B En
Total Temp SIS U Eheap Ets Fix Binary Driver
Allocator Type. Block size (k8) Carrier size (kB)
total 28196 45183
temp_alloc o 640
slalloc o 160
std_alloc 424 928
I alloc 22395 28160
eheap_alloc 3852 9272
ets_alloc 1013 3232
65 416

fix alloc

images/observer_7.png
nonode@nohost

| System Load Charts _Memory Allocators _Applications _Processes _Table Viewer _ Trace Overview |
Nodes Processid | Trace Options.
nonode@nohost new send receive
Trace Log
[7'_"",44,701",44, 91, [[123, ["return_trace'],
1251,9311,
1251],
"fun(_) -> return_trace() end"}}

s 12:24:35:959559 (<0.3110.0>) << {io_reply,#Re£<0.0.3.417>,

i Soiad] <<"GenServer.call(pid, :next_number)\n">>}
12:24:35:959604 (<0.3110.0>) <0.27.0> | {input,<0.3110.0>,

Elixir.Seqt <<"GenServer.call(pid, :next_number)\n">>}
12:241:35:959786 (<0.3109.0>) << {'Sgen_call’,{<0.77.0>,#Re£<0.0.3.418>},next_number}
12:24:35:959799 (<0.3109.0>) <0.77.0> | {fRe£<0.0.3.418>,100}
12:24:35:959977 (<0.3125.0>) <0.26.0> | {io_request,<0.3125.0>,#Re£<0.0.3.421>,

{get_line, unicode,<<"iex(4)> ">>}}

(SEBEIEEE) | Aod Nodes | Add new' Process | Add Trace Pattern

‘nonode@nohost

images/xref_graph.png
(compile)

(compile)

weblchannelsuser_socketex

welviewsieror_view.ex

lib/webappirepo.cx

images/observer_1.png
System _Load Charts _Memory Allocators

nonode@nohost

Applications _Processes | Table Viewer

‘Trace Overview

System and Architecture

System Version:
Erts Version:
Compiled for:
Emulator Wordsize:
Process Wordsize:
Smp Support:
‘Thread Support:

Async thread pool size:

CPU's and Threads.

Logical CPU's:
Online Logical CPU's:
Available Logical CPU's
Schedulers:

Online schedulers:
Available schedulers:

71
x86_64-apple-darwin14.5.0
8

8
true
true
10

Memory Usage
Total: 27MB
Processes: 6997 kB
Atoms: 500 kB
Binaries: 54 kB

Code: 13M8

Ets: 1060 kB

Up time: 14 Mins
Max Processes: 262144
Processes: 64

Run Queue: O

10 Input: 17mB
10 Output: 4347k

images/observer_5.png
nonode@nohost

System Load Charts Memory Allocators _Applications Processes Table Viewer _Trace Overview

Pid Name or Initial Func Reds. Memory | MsgQ | Current Function
<0.800> wxe_server. 134697 27664 0 gen_server:ioop/6
<03.0> erl_prim_loader 48972 122304 0 erl_prim_loader:loop/3
<0.89.0> erlang:apply/2 36060 42348 0 observer_pro_wxtable_holder/1
<0.100.0> 11654 42408 0 wx_objectiloop/6
<0.88.0> geninit it/6 6666 16904 0 wx_objectiloop/6
<0.99.0> geninit_it/e 5653 16824 0 wx_objectiloop/6
<0120 code_server 3852 263960 0 code_server:ioop/1
<0.83.0> geninit_it/e 2596 122216 0 wx_objectloop/6
<0.820> erlang:apply/2 1672 2720 0 timer:sleep/1

<0.79.0> observer 1504 14056 0 wx_objectloop/6
<0.77.0> erlang:apply/2 261 21680 0 ElixirIEx Evaluator:loop/3.
<0.87.0> geninit_it/6 11 11936 0 wx_objectloop/6
<0.24.0> user_drv 92 21720 0 user_drviserver_loop/6.
<0.101.0> erlang:apply2 £ 2752 0 ioiexecute_request/2
<0.84.0> timer_server 87 7056 0 gen_server:oop/6

nonode@nohost

images/observer_4.png
nonode@nohost

System Load Charts Memory Allocators _ Applications _Processes _Table Viewer Trace Overview

S
i = =) (@)
aa

i

scusnce

<0.12.0>

images/observer_2.png
nonode@nohost

System | Load Charts ~Memory Allocators _Applications _Processes _Table Viewer Trace Overview

Scheduler Utiization (9

/1 \ \

AN

PO
-

A

i

. VAV

B 3 o 01 T ER
Total Processes Atom Binary Code Ets Input_Output

images/observer_6.png
nonode@nohost

System Load Charts Memory Allocators _Applications _Processes _ Table Viewer Trace Overview
“Table Name Table Id Objects Size (kB) Owner Pid Owner Name.
Elixir.[Ex.Config 1 2 <0.43.0>
elixir_config 1 3 <0.36.0>
elixir_modules [2 <0.39.0> elixir_code_server

nonode@nohost

images/table_formatter.png
Issues
001

Githubls:

IssuesTableFormatter

Issues.TableFormatter »

Summary

Functions T
Tuch header identifies

format_for(column_widths) e jrom the rows.o

Return a format string that hazd co

\ng) version of our parameter.

print,
‘examples
iex> printable("a")
iex> printable(99)

o

images/midiheader.png
AL

Y =SMPTE famels,

images/conveyor.png
internal

github
representation

§ issues elixir-lang elixir json

data

prettytable subset

“‘

re
o o

images/coverage.png
b/issues;

defrodile Tssues. TableFormatter do
import. Enum, only: [each: 2, map: 2, map_join: 3, max: 1]

edoc
Takes a List of row data, where each row is a Nap, and a List of
headers. Prints a table to STOOUT of the data fron each row
identified by cach header. That is, each header identifies a colum,
and those colums are extracted and printed fron the rons.

Me calculate the width of each colum to fit the longest element
in that column,

def print_table_for_colums(rows, headers) do

with data_by_colums = split_into_columsCrows, headers),
column_widths = widths_of (data_by_colums),
Format = format_forcolum_widths)

@
puts_one_Line_in_colums(headers, format)
10, puts(separator(colum_widths)
puts_in_columns(data_by_columns, fornat)

Given a List of rows, where each row contains a keyed list
of colums, return a list containing lists of the dota in
each column. The "headers® parometer contains the

Uit of colums to extract

Example

LU

issues.ox

clex

it Jssuos.ox
rope——

images/jessitron.png
-3 %

jessitron
GOTO was evil because we asked, "how did | get to this point of execution?"

Mutability leaves us with, *how did | get to this state?*
=] by pragdave

images/source_code.png
B

gmatic

ookshelfl

Resources

Books & Screencasts Forums

Description Preregs

Source code
Errata

Releases
Discussion Forum

Support Training Become an Author

Click here
then here

Extracts

Author

W Cart(0) Login

Search our catal KoY

images/_covers/rjnsd.jpg
The Nature
of Software

Devel w\

images/_covers/wwgraphql.jpg
Y
Rbsinthe

raphOL AP

images/_covers/jbmaze.jpg

images/WigglyRoad.jpg

Copyright 2010,2011 Canonical Ltd.

This Font Software is licensed under the Ubuntu Font Licence, Version
1.0. https://launchpad.net/ubuntu-font-licence

images/_covers/jfelm.jpg
Programming
Foim

images/_covers/atevol.jpg
Software
Design X Rays

images/h1-underline.gif

images/_covers/mnee2.jpg
Release It!

images/_covers/lhelph.jpg

images/joe.jpg
Y

